MATH3354 Revision

Damon Binder u5591488

November 10, 2015

A complex Lie algebra \mathfrak{g} is **reductive** if it is the complexification of the lie algebra of a compact matrix Lie group. It is **semisimple** if it is reductive and has trivial centre. If \mathfrak{g} is reductive, there is an inner product on \mathfrak{g} such that

$$\langle [X, Y], Z \rangle = \langle Y, [X^*, Z] \rangle.$$

A Lie algebra is **simple** if it is semisimple and has no nontrivial ideals. Every semisimple Lie algebra is the direct product of simple Lie algebras.

A **Cartan subalgebra** $\mathfrak{h} \subset \mathfrak{g}$ is a maximal commutative subalgebra where ad_H is diagonalizable. In a semisimple Lie algebra, every maximal commutative subalgebra is a Cartan subalgebra. The **rank** of a Li algebra is the dimension of any Cartan subalgebra.

An element $\alpha \in \mathfrak{h}$ is a **root** if $\exists X \in \mathfrak{g}$ so that

$$[H,X] = \langle \alpha, H \rangle X \ \forall H \in \mathfrak{h}$$

The set of such root vectors X is called \mathfrak{g}_{α} and is called the root space. Each \mathfrak{g}_{α} is onedimensional, and the roots spaces are orthogonal to each other and as an inner product space

 $\mathfrak{g} = \mathfrak{h} \oplus \text{root spaces.}$

If α is a root, $\lambda \alpha$ is a root iff $\lambda = \pm 1$.

 $[g_{\alpha},g_{\beta}] \subset g_{\alpha+\beta}.$

If $X \in g_{\alpha}$, then $X^* \in g_{-\alpha}$. For every root α , there is a $X \in \mathfrak{g}_{\alpha}$ such that

$$[H_{\alpha}, X_{\alpha}] = 2X_{\alpha}, \quad [X_{\alpha}, X_{\alpha}^*] = H_{\alpha}.$$

Then we find that

$$H_{\alpha} = \frac{2}{\langle \alpha, \alpha \rangle} \alpha$$

and this is called a **coroot**.

The Weyl group W of the roots R is defined as the group generated by the mappings

$$s_{\alpha}H = H - \frac{\alpha, H}{\alpha, \alpha}\alpha.$$

This group preserves the roots.

A root system is a finite set of nonzero elements of a real product space E with

- 1. R spans E
- 2. If $\alpha \in R$ and $\lambda \alpha \in R$, the $\lambda = \pm 1$
- 3. If $\alpha, \beta \in R$ then $s_{\alpha}\beta \in R$
- 4. For all $\alpha, \beta \in R$,

$$\frac{2\langle\alpha,\beta\rangle}{\langle\alpha,\alpha\rangle} \in \mathbb{Z}$$

There is a one-to-one correspondence between semisimple lie algebras and root systems. The **rank** of a the system is the dimension of E.

Suppose α, β are root which are not multiples of each other, and assume $\langle \beta, \beta \rangle \leq \langle \alpha, \beta \rangle$. Then one of the following is true

- 1. $\langle \alpha, \beta \rangle = 0$
- 2. $\|\alpha\|^2 = \|\beta\|^2$ and the angle between α and β is $\pi/3$ or $2\pi/3$
- 3. $\|\alpha\|^2 = 2 \|\beta\|^2$ and the angle between α and β is $\pi/4$ or $3\pi/4$
- 4. $\|\alpha\|^2 = 3 \|\beta\|^2$ and the angle between α and β is $\pi/6$ or $5\pi/6$

A base for R is a set of roots which form a basis for E, and for which every root can be written as the sum of all positive or all negative elements of the base.

An integral element $\mu \in E$ is a vector such that for all $\alpha \in R$,

$$\langle \mu, H_{\alpha} \rangle = 2 \frac{\langle \mu, \alpha \rangle}{\langle \alpha, \alpha \rangle} \in \mathbb{Z}$$

For a give base α_i , fundamental weights are the weights such that

$$2\frac{\langle \mu_i, \alpha_j \rangle}{\langle \alpha_j, \alpha_j \rangle} = \delta_{ij}$$

since any other weight can be built from sums of these weights. An element $\mu \in E$ is **dominant** if $\langle \alpha, \mu \rangle \geq 0$ and strictly dominant if $\langle \alpha, \mu \rangle > 0$. An element μ is **higher** than ν if $\mu - \nu$ can be written as positive sum of elements in the base.

If (π, V) is a representation of \mathfrak{g} , then a weight vector is a $v \in V$ such that

$$\pi(H)v = \langle \lambda, H \rangle v$$

for some $\lambda \in \pi(\mathfrak{h})$. We then call λ a **weight**. Every weight in a finite representation must be an integral element of \mathfrak{h} . Every irreducible finite-dimensional representation of \mathfrak{g} has a unique highest weight. Conversely, every dominant integral element is a highest weight of an irreducible representation.