
Revision Notes for Algebraic Topology

Damon Binder
u5591488

November 17, 2015

1 General Notions

1.1 Operations on Spaces

Given two spaces X, Y , the simplest operations are the product of spaces X×Y , and disjoin union
XqY . If we have A ⊂ X, the quotient X/A can be constructed, with quotient map q : X → X/A.

The cone CX is X × I/X × {0}, and the suspension SX is X × I/X × {0, 1}. Maps between
X and Y can naturally be extended to SX and SY likewise CX and CY.

For pointed spaces (X, x0) and (Y, y0), the wedge sum X ∨ Y is the space X q Y/(x0 ∼ y0).
We can embed this in X × Y via the map f(x) = (x, y0), f(y) = (y, x0). The smash product is
then defined as X × Y/X ∨ Y .

1.2 Homotopy

A homotopy is a map F : X × I → Y . Two maps f0, f1 are homotopic if a homotopy connects
them, in which case we write f0 ' f1. If between two spaces X and Y there are maps f : X → Y
and g : Y → X so that fg ' 1, gf ' 1, then we say that X and Y are homotopically equivalent.
A map is nullhomotopic if it is equivalent to a constant map.

A retraction from X to a subspace A ∈ X is a map with r(X) = A, r|A = idA. A deforma-
tion retraction is a homotopy from idX to a retraction. If the identity on X is nullhomotopic,
then we say that X is contractible. If ft is a homotopy whose restriction to A is independent on
t, then we say that ft is homotopy relative to A, or rel A for short.

Let f0 : X → Y and for A ⊂ X, let ft : A→ Y be a homotopy of f0|A. If for this setup there
is always an ft : X → Y then we say the pair (X,A) have the homotopy extension property.

Proposition: If (X,A) satisfy the homotopy extension property, then the quotient map q :
X → X/A is a homotopy equivalence.

Proposition: Suppose (X,A) and (Y,A) satisfy the homotopy extension property, and f :
X → Y is a homotopy equivalence with f |A = idA. The f is a homotopy equivalence rel A.
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1.3 CW Complexes

Cell complexes describe ways to create spaces by gluing together discs. They are made through
the following steps:

1. Start with a discrete set X0.

2. For the n-skeleton Xn, construct Xn+1 by attaching n-cells enα which are open disks of
dimension n. We have Φ : q ∂enα → Xn which identifies the boundaries of the n-cells with
the Xn−1 skeleton, and then construct

Xn+1 = Xn q enα/x ∼ Φ(x).

If X = Xn for some n, then X is said to have dimension n. A subcomplex of X is a closed
subspace A which is a union of cells of X. For a complex and subcomplex, (X,A) has the homotopy
equivalence property.

1.4 Important Spaces

The most basic space is the disc Dn = {x ∈ Rn|x| ≤ 1}. The n-sphere can be defined as

Sn = ∂Dn+1 = Dn/∂Dn.

Real projective space is defined as

RP n = Rn+1/(x ∼ λx) = Sn/(x ∼ −x) = Dn/{x = −x iff |x| = 1}.

Since we can construct RP n from RP n−1 by attaching an n-cell en via the quotient map Sn−1 →
RP n−1. Hence itt has cell structure e0 ∪ e1... ∪ en. Likewise for complex projective space

CP n = Cn/(x ∼ λx)

which has cell complex stucture e0 ∪ e2 ∪ ... ∪ e2n attached via the quotient map S2n−1 → CP n−1.

2 Fundamental Groups

2.1 Basics

Consider the set of paths I → X denoted XI . We shall consider homotopy classes of such paths
which preserve the endpoints. Firstly, any reparameterization of f ∈ XI remains in the same
homotopy class [f ]. So if f(1) = g(0), then we can compose the two paths

f · g(t) = f(2t) for t ≤ 1

2
, f · g(t) = g(2t+ 0.5) for t >

1

2

and then define [f ] · [g] = [f · g]. The composition is associative, and for any f , there is an inverse
f̄(t) = f(1− t), since [f̄ · f ] = [f(0)]. Hence the set of homotopy classes is a groupoid.
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A loop is a path for which f(0) = f(1). The fundamental group π1(X, x0) is the set of ho-
motopy classes of loops starting at x0, with composition as defined above. If X is path-connected,
then any two π1(X, x0) and π1(X, x1) are isomorphic, since we can take a path h from x0 to x1
and then [h]π1(X, x0)[h̄] = π1(X, x1). We say X is simply-connected if it is path-connected with
trivial fundamental group.

The map π1 from the category of pointed sets to the category of groups is a functor, with
continuous maps f : X → Y inducing homomorphism f∗ : π1(X)→ π1(Y ) via f∗[φ] = [f(φ)]. This
takes commutative diagrams of topological spaces into commutative diagrams of groups. A simple
corollary of this is that injective functions induce injective homomorphism, and homeomorphisms
induce isomorphisms.

Proposition: For path-connected X, Y , π1(X × Y ) ≈ π1(X)× π1(Y ).
Proposition: For path-connected X, Y , π1(X ∨x0 Y ) ≈ π1(X) ∗ π1(Y ) if x0 is a deformation

retraction of some open neighbourhood of x0 in both X and Y .
The functor π1 is homotopy invariant; ie, if there is a homotopy equivalence between X and

Y , then π1(X) ≈ π1(Y ). Furthermore, if φt is a homotopy, then φ0∗ = φ1∗. So we can consider π1
to be a functor on the homotopy category.

2.2 Some Basic Fundamental Groups

Proposition: The fundamental group of Rn is trivial. To see this, note that for any two loops
f(s) and g(s), the linear combination

Ft(s) = tf(s) + (1− t)g(s)

is a homotopy between the loops.

Theorem: The fundamental group of S1 is Z.
This can be used to prove three interesting results by contradiction, through the construction

of a homotopy between a trivial and a non-trivial loop in S1.
Fundamental Theorem of Algebra: Every non-constant polynomial has a root.
Brouwer Fixed Point Theorem: Every map from D2 → D2 has a fixed point.
Two-Dimensional Borsuk-Ulam Theorem: For every continuous mapping f : S2 → R2,

there exists a pair of antipodal points x and −x so that f(x) = f(−x).
As a corollary, if S2 is expressed as the union of three closed sets, then at least one must contain

a pair of antipodal points.

Proposition: For n ≥ 2, the sphere Sn is simply-connected.

2.3 Van Kampen Theorem

Let X be the union of path-connected open sets Aα, each containing x0 ∈ X. For each Aα we
have an inclusion jα : Aα ↪→ X inducing a homomorphism jα∗ between the fundamental groups.
This can be extended to a homomorphism Φ : ∗απ1(Aα, x0)→ π1(X, x0). The first part of the Van
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Kampen Theorem states that if each intersection Ai ∩ Aj is path-connected, then Φ is surjective.

Let iαβ∗ : π1(Aα ∩Aβ)→ π1(Aα). Since jαiαβ = jβiβα, the kernel of Φ must include elements of
the form iβα

−1
∗ (ω)iαβ∗(ω). The second part of the Van Kampen theorem states that if Aα∩Aβ∩Aγ

is path connected, then the kernel N of Φ is generated by elements of form iβα
−1
∗ (ω)iαβ∗(ω), and

so π1(X) ≈ ∗απ1(Aα)/N.

The wedge product π1(X ∨ Y ) ≈ π1(X) ∗ π1(Y ) is the special case with only two sets, disjoint
except for x0.

The Van Kampen Theorem is very useful for analysing the fundamental group of 2-dimensional
cell complexes. Suppose we produce a space Y by attaching 2-cells e2α to X via mappings Φα :
∇e2α → X.

Proposition: The inclusion X ↪→ Y induces a surjection π1(X) → π1(Y ) whose kernel is
π1(Φ(qe2α)).

Corollary: The fundamental group of the genus g torus is π1(Mg) = 〈a1, b1, ...ag, bg|[a1, b1]...[ag, bg]〉.
Corollary: For every group G there is a 2-dimensional cell complex XG with π1(XG) ≈ G.

2.4 Covering Spaces

Definition: A covering space of X is a space X̃ and a map p : X̃ → X so that there is an
open cover {Uα} of X with p−1(Uα) being a disjoint union of open sets, each of which is mapped
homeomorphically to Uα by p.

We can define a category where the objects are covering spaces of X along with their maps
p : X̃ → X, and the morphisms are continuous maps f : X̃1 → X̃2 so that p1 = f ◦ p2. Since X
covers itself with the identity map, every p is a morphism in this category.

X̃1 X̃2

X

f

p1 p2

id

This gives us a natural notion of isomorphism and automorphism; the automorphisms of a
covering space are known as the deck transformations, aut(X̃).

The cardinality of p−1(x) is locally constant, so if X is connected, this is constant over all of
X and is known as the number of sheets of X.

Given f : Y → X, a lift of f is a map f̃ : Y → X̃ so that p ◦ f̃ = f .
Proposition If Y is connected, then lifts of f are unique in the sense that if two lifts agree at

a single point, then they must agree everywhere.
Proposition If we have a homotopy ft : Y → X and a lift f̃0 of f0, then there is a unique lift

f̃t of the entire homotopy.
This second proposition allows us to prove
Proposition: The map covering space map p∗ : π1(X̃, x̃0)→ π1(X, x0) is injective.
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This proposition shows us that π1 is a functor from the category of covering spaces of X to the
category of subgroups of π1(X). The second category is the category where objects are subgroups
of π1(X) along with their inclusion homomorphisms, and morphisms are maps that commute
with these inclusion homomorphisms. Note this definition is identical to that of the category of
covering spaces, but with X changed to π1(X) and covering space maps replaced with inclusion
homomorphisms. Note also that the notion of isomorphism in the category of subgroups is stronger
than that of groups; two subgroups are isomorphic only if they have the same image in the group.

Finally, we have the following lifting criterion which describes answers the existence question
for lifts:

Proposition: Take a covering space p : (X̃, x̃) → (X, x) and a map f : (Y, y) → (X, x),
where Y is path-connected and locally path-connected. Then a lift of f exists iff f∗(π1(Y, y)) ⊂
p∗(π1(X, x)).

If we put further restrictions on X, we can prove more about π1. Let us assume that X is path-
connected and locally path-connected, and let us examine only path-connected covering spaces.
Then

Proposition: If p1(x̃1) = p2(x̃2) and p1∗(π1(X̃1, x̃1)) = p2∗(π1(X̃2, x̃2)), then there is a base-
point preserving isomorphism from X̃1 to X̃2.

Proposition: If x̃0, x̃1 ∈ p−1(x0), then p∗(π̃1(X̃, x̃0)) and p∗(π1(X̃, x̃1)) are (non-trivial) con-
jugate subgroups.

In fact, if γ is a path between x̃0 and x̃1 then

[p(γ)]−1p∗(π̃1(X̃, x̃1))[p(γ)] = p∗(π1(X̃, x̃0)).

We say that p : X̃ → X is normal if for every x̃0, x̃1 ∈ p−1(x0) there is a deck transformation
taking x̃0 to x̃1. Unsurprisingly, we have

Proposition: X̃ is normal iff p∗(π1(X̃)) is normal.
Proposition: aut(X̃) ≈ N(π1(X̃))/π1(X̃).
N(H) is the normalizer of a subgroup H in G.

The above propositions show that in some sense, π1 is a injection from the coverings of X to the
subgroups of π1(X). To turn this into a bijection, we need to add an extra condition on X. We say
X is semilocally simply-connected if every point in x has a neighbourhood U so that the inclusion
π1(U)→ π1(X) is trivial. This is a strictly weaker condition then local simply-connectedness.

Proposition: IfX is path-connected, locally path-connected, and semilocally simply-connected,
then for every H ⊂ π1(X), there is a space p : XH → X with p∗(π1(X)) = H. In particular, when
H is the trivial subgroup, X̃ is known as the universal covering space.

Theorem: For path-connected, locally path-connected, and semilocally simply-connected X,
there is a bijection between basepoint preserving path-connected covering spaces and subgroups
of π1(X, x0). Ignoring basepoints, there is a bijection between path-connected covering spaces and
conjugate subgroups of π1(X).

Given a group G and a space Y , an action of G on Y is a homomorphism from G to the group
of homeomorphisms of Y to itself. A covering space action is an action so that for every y there
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is a neighbourhood U with g1(U) ∩ g2(U) not empty implying g1 = g2. The orbit space is the
space Y/G constructed by quotienting out x ∼ y is x = g(y) for some g ∈ G.

Proposition: For a covering space action, the quotient p : Y → Y/G is a normal covering
space.

Proposition: If Y is path-connected, aut(Y/G) ≈ G.

3 Homology

3.1 Chain Complexes and Exact Sequences

A chain complex is a diagram

...→ Ai+1
αi+1→ Ai

αi→ Ai−1 → ...

of abelian groups so that ∂2 = 0. An exact sequence is a chain complex where kerαi = im αi−1.
A short exact sequence is an exact sequence

0→ A
f→ B → C

g→ 0.

This is equivalent to demanding that f is injective and g is surjective, so C ≈ B/f(A). A split
exact sequence is an exact sequence which is part of the commutative diagram:

B

0 A C 0

A⊕ C

g

≈

f

According to the splitting lemma, this is equivalent to the existence of a left inverse to f or a right
inverse to g.

A chain map is a series of maps fi so that the below diagram commutes.

... Ai+1 Ai Ai−1 ...

... Bi+1 Bi Bi−1 ...

αi+2 αi+1

fi+1

αi

fi

αi−1

fi−1

βi+2 βi+1 βi βi−1

3.2 Singular Homology

For a set of points v0, ..., vn we define the simplex as the set of convex combinations of the points

[v0, ..., vn] =

{∑
i

tivi ∈ Rn|
∑
i

ti = 1 and ti ≥ 0 for all i

}
.
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The standard n-simplex is

∆n =

{
(t0, ..., tn) ∈ Rn|

∑
i

ti = 1 and ti ≥ 0 for all i

}
.

By deleting a vj, we get a face of [v0, ..., vn]. The boundary ∂[v0, ..., vn] is defined as the set of faces.

A singular n-simplex on a space X is a map σ : ∆n → X. The set of n-chains Cn(X) is
defined as the free abelian group generated by the set of singular n-simplices; they are finite formal
sums

∑
i σi for ni ∈ Z. The boundary map is defined as

∂n(σ) =
∑
i

(−1)iσ|[v0, ..., v̂i, ..., vn].

From this definition we easily can prove
Proposition: The boundary of a boundary is trivial, ∂2 = 0.
Because of this, we can define the singular homology group Hn(X) = ker ∂n/im ∂n+1.

Proposition: If X is composed of path-components Xα, then Hn(X) ≈ ⊕αHn(Xα).
Proposition: If X is path-connected and nonempty, then H0(X) ≈ Z.
Proposition: If X is a point, then Hn(X) = 0 for n > 0.
We define the reduced homology groups H̃n(X) using the sequence

...→ C1(X)→ C0(X)→ Z→ 0

where the map from ε : C0(X)→ Z takes every 0-chain to 1. This means that H̃0(X) = 0 if X is
connected. Obviously, H0(X) ≈ H0 ⊕ Z and Hi(X) ≈ H̃i(X) for i > 0.

Given a map f : X → Y , this induces a chain map f], which in turn induces a homomorphism
f∗ : Hn(X)→ Hn(Y ).

Theorem: If f and g are homotopic, then f∗ = g∗. In particular, homotopic spaces have
isomorphic homology groups.

Hence, just like the fundamental group, the homological groups are functors from the homotopy
category to an algebraic category, this time the category of abelian groups.

3.3 Relative Homology

Given a spaceX and subspaceA ⊂ X, we define the Cn(X,A) to be the quotient group Cn(X)/Cn(A).
Since ∂ takes Cn(A) to Cn−1(A), there is an induced quotient map ∂ : Cn(X,A)→ Cn−1(X,A). We
define the relative homology group as Hn(X,A) = ker ∂/im ∂. From the definitions, we can see
that elements of Hn(X,A) are represented by relative cycles α ∈ Cn(X) with ∂α ∈ Cn−1(A). A
relative cycle is trivial iff it is a relative boundary: α = ∂β+γ for β ∈ Cn+1(X) and γ ∈ Cn(A).

Proposition: If x is a point in X, then Hn(X, x) ≈ H̃n(X).

By examining the diagram
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0 Cn(A) Cn(X) Cn(X,A) 0

0 Cn−1(A) Cn−1(X) Cn−1(X,A) 0

i

∂

j

∂ ∂

i j

we find (through quite an involved diagram chase) that there is an exact sequence of homology
groups

...→ Hn(A)→ Hn(X)→ Hn(X,A)→ Hn−1(A)→ ...

Proposition: If two maps f, g : (X,A) → (Y,B) are homotopic through maps of pairs
(X,A)→ (Y,B) then f∗ = g∗.

Excision Theorem: If Z ⊂ A ⊂ X such that the closure of Z is contained in the interior of A,
then the inclusion (X−Z,A−Z) ↪→ (X,A) induces an isomorphism Hn(X−Z,A−Z)→ Hn(X,A)
for all n.

Equivalently, for A,B ⊂ X whose interiors cover X, the inclusion (B,A∩B) ↪→ (X,A) indues
isomorphism Hn(b, A ∩B)→ Hn(X,A) for all n.

A good pair is (X,A) is a space X and a nonempty closed subspace A this is a deformation
retractof some neighborhood of X. For instance, any subcomplex of a CW complex is a good pair.

Theorem: If (X,A) are a good pair, then the quotient map q : (X,A)→ (X/A,A/A) induces
a n isomorphism q∗ : Hn(X,A)→ Hn(X/A,A/A) ≈ H̃n(X).

Proposition: For a wedge sum,
⊕

α H̃n(Xα) ≈ H̃n(
∨
αXα) if (Xα, xα) are good pairs.

Mayer-Vietoris Sequence: If A and B are subsets in X with X equalling the union of the
interiors of A and B, then there is an exact sequence

...→ Hn(A ∩B)→ Hn(A)⊕Hn(B)→ Hn(X)→ Hn−1(A ∩B)→ ...

3.4 Simplicial Homology

Whilst singular homology can be used to define the homology of general spaces, simplicial homology
provides a way of computing the homology of basic spaces known as ∆-complexes. A ∆-complex
structure on a space X is a collection of maps σα : ∆n → X so that

1. σα acts injectively on the interior of ∆n, and every point in X is in the image of exactly one
interior.

2. Each restriction of σα to a face is one of the maps σβ : ∆n−1 → X.

3. A set A ⊂ X is open iff σ−1α (A) is open in ∆n for each α.

We then define ∆n(X) to be the set of mappings σα, and can continue defining homology from
these groups just as in singular homology.
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Theorem: The homology groups calculated through singular and simplicial homology are iso-
morphic.

By dividing spaces into ∆-complexes, we can calculate a few homologies.
Proposition: For the n-sphere, H̃n(Sn) = Z and otherwise H̃k(S

n) = 0.
Corollary: ∂Dn is not a retract of Dn, and hence every map f : Dn → Dn has a fixed point.
Theorem: If U ⊂ Rn and V ⊂ Rm are homeomorphic, then m = n.
Proposition: For the torus, H̃1(T ) = Z, H̃2(T ) = Z⊕ Z, and H̃i(T ) = 0 otherwise.

3.5 Map Degree and Cellular Homology

A map f : Sn → Sn induces a map f∗ : Hn(Sn) → Hn(Sn) which is a homomorphism from Z to
itself. Hence it is multiplication by an integer, this integer is known as the degree of the map.
Basic Properties:

1. deg f = 0 if f is not surjective

2. degR = −1 for reflection R

3. If a map has no fixed points, then the degree is (−1)n+1

Theorem: Sn has a continuous field of nonzero tangent vectors iff n is odd
Theorem: Z2 is the only nontrivial group that can act freely on Sn if n is even.
Theorem: deg f =

∑
i deg f |xi where xi ∈ f−1(y)

Theorem: deg(Sf) = deg f.

For a CW complex X, the cellular chain complex is the LES

...→ Hn+1(X
n+1, Xn)

dn+1→ Hn(Xn, Xn−1)→ ...

The homology of this sequence is the same as the homology of X. We can calculate

dn(enα) =
∑
β

dαβe
n−1
β

where dαβ is the degree of the map Sn−1α → Xn−1 → Sn−1β , ie the composition of the attaching

map with the quotient killing everything in Xn−1− en−1β . The Euler Characteristic is defined as

χ(X) =
∑
n

(−1)ncn =
∑
n

(−1)nrankHn(X)

where cn is the number of n-cells.
Theorem: The first three homology groups of the genus g torus are Z,Z2g,Z, with all others

being trivial.
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3.6 Formal Viewpoint

A homology theory assigns to each CW complex X a sequence of abelian groups h̃n(X) and to
each f : X → Y a sequence of homomorphisms f∗ : h̃n(X)→ h̃n(Y ) such that

1. If f and g are homotopic, then f∗ = g∗.

2. There is a long exact sequence

...→ h̃n(A)→ h̃n(X)→ h̃n(X/A)
∂→ h̃n−1(A)→ ...

where ∂ is natural, so that for each f : (X,A)→ (Y,B),

h̃n(X/A) h̃n−1(A)

h̃n(Y/B) h̃n−1(B)

∂

f∗ f∗

∂

3. h̃n(∨αXα) ≈ ⊕αh̃n(Xα)

The groups hn(x0) ≈ h̃n(S0) are called the coefficients of the homology theory.

4 Cohomology

4.1 Cohomology Groups

Cohomology is homology with the arrows flipped. Given the chain complex

...
∂→ Cn+1

∂→ Cn
∂→ Cn−1

∂→ ...

we have the dual cochain complex given by taking the groups Hom(Cn, G); that is, the group of
homomorphisms from Cn to G. This gives us

...←− Hom(Cn+1, G)←− Hom(Cn, G)←− Hom(Cn−1, G)←− ...

which can be written as
...

δ←− Cn+1 δ←− Cn δ←− Cn−1 δ←− ...

The cohomology groups Hn(C;G) are then the homology of this chain complex. The universal
coefficient theorem shows that there is a natural split exact sequence

0→ Ext(Hn−1(X), G)→ Hn(X;G)→ Hom(Hn(X), G)→ 0.

The group Ext(H,G) can be calculated from the three rules

• Ext(H ⊕H ′, G) ≈ Ext(H,G)⊕ Ext(H ′, G)

• Ext(Z, G) ≈ 0
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• Ext(Zn, G) ≈ G/nG

If two spaces have the same homology groups, they have the same cohomology groups regardless
of G.

The long exact sequence of a pair, excision and the Mayer-Vietoris sequence hold with the
arrows reversed. Likewise the relationship between cellular, singular, and simplicial homology
holds in cohomology as well.

4.2 Cup Product

The reason cohomology is interesting is that there is natural product on cohomology groups called
the cup product. Given a ring R and for cochains α ∈ Ck(X;R) and β ∈ Cj(X;R), define

(α ^ β)(σ) = α(σ|[v0, ..., vk])β(σ|[vk, ..., vk+j])

where σ ∈ Ck+l(X;R). This is associative and distributive. Furthermore,

δ(α ^ β) = (δα) ^ β + (−1)kα ^ δβ

so the cup product can be extended to the cohomology groups,

^: Hj(X)×Hk(X)→ Hj+k(X).

We can therefore combine all of the cohomology groups into a graded cohomology ring H∗(X;G),
where if α ∈ Hj(X) we say that |α|, the dimension of α, is j. The product is commutative:

α ^ β = (−1)jkβ ^ α.

Theorem: H∗(RP n;Z2) ≈ Z2[α]/αn+1 with |α| = 1.
H∗(CP n;Z) ≈ Z[α]/αn+1 with |α| = 2.
H∗(RP∞,Z) ≈ Z[α]/2α, with |α| = 2.
H∗(RP 2n,Z) ≈ Z[α]/(2α, αk+1), with |α| = 2.
H∗(RP 2n+1,Z) ≈ Z[α, β]/(2α, αk+1, β2, αβ), with |α| = 2, |β| = 2k + 1.
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