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Abstract 
The one-dimensional heat equation is a partial differential equation describing the flow of heat 
through a rod. Additionally, if we know both the initial temperature distribution along the rod 
combined with information on the behaviour of the rod’s endpoints, then we have a boundary-value 
problem. This can be solved to allow us to predict the temperature of the rod over time. This essay 
will discuss the topic:  

How Fourier series and the method of Separation of Variables can be used to solve the One-
dimensional Heat Equation. 

We begin with a discussion of partial differentiation, followed by a derivation of the one-dimensional 
heat equation and explanation of its applicability to modelling other natural phenomenon. This is 
followed by an exploration of boundary conditions and their associated boundary-value problems. 
Three important boundary-value problems will be introduced, known as the Dirichlet, Neumann, and 
Fourier Ring problems; these will later be solved using Fourier series. 
Fourier series allow us to write a function as an infinite sum of sines and cosines. The mathematics 
behind this is explained, and three half-range expansions of significance when solving the heat 
equation will be derived. Another mathematical technique known as separation of variables will 
then be discussed and applied to the heat equation. 
We use both these mathematical techniques to derive a general series solution to each of the three 
boundary-value problems associated with the one-dimensional Heat Equation. The theory of Fourier 
series allows us to calculate the coefficients of the series using a sequence of integrals, enabling us 
to predict the flow of heat through the rod for each of the boundary-value problems. 
Word Count: 266 
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1. Introduction 
The prediction of heat flow through a rod is a classical problem in mathematical physics. Heat flow is 
mathematically described by the one-dimensional heat equation: 

ݑ߲
ݐ߲ = ݇ ߲ଶݑ

ଶݔ߲ , ݇ > 0 
If we are given an initial temperature distribution along the length of the rod, with information also 
on the behaviour of the system’s endpoints, then this forms a boundary-value problem. By solving 
this problem, we can predict the temperature at any point in the rod over time. This equation also 
describes diffusion processes so the study of it and its solutions can be applied in fields as diverse as 
physics, biology, and economics. For simple boundary conditions, the methods of Fourier series and 
Separation of Variables can be used to solve the heat equation. Our research question is thus: 

How Fourier series and the method of Separation of Variables can be used to solve the  
One-dimensional Heat Equation. 

Since the heat equation is written in terms of partial derivatives డ௨
డ௧  and డమ௨

డ௫మ, we shall begin with a 
description of partial differentiation, followed by a physical derivation of the one-dimensional heat 
equation. The application of the heat equation to other physical problems, such as diffusion, will 
then be explained. With this theory in place, we shall study boundary-value problems in more depth. 
The methods of Fourier series and Separation of Variables are needed to solve the one dimensional 
heat equation, and we turn to these topics in sections 4 and 5. We then find solutions to the 
boundary-value problems in sections 6, 7, and 8. To calculate Fourier series, a few difficult integrals 
need to be evaluated. To avoid interruption, these are evaluated in Appendix A rather than in the 
main body of the essay. 
 
  
  



Extended Essay:  Name: Damon Binder Candidate Code: dyd434 Session Number: 003766-006 How Fourier series and the method of Separation of Variables can be used to solve the One-Dimensional Heat equation 
 

5  

2. The Heat Equation 
2.1 Partial Derivatives 
Assume we have a wire laying on the ݔ axis between ݔ = 0 and ݔ =  The temperature at each .ܮ
point of the wire changes over time. We define the function: 

,ݔ)ݑ ,(ݐ 0 ൑ ݔ ൑  ܮ
as the function which gives us the temperature of the point ݔ along the wire at time ݐ. This is a 
multivariable function, as it takes two inputs (ݔ, ,ݔ)ݑ and assigns them a real value (ݐ  Akin to the .(ݐ
definition of a derivative: 

݂݀
ݔ݀ = ݂ᇱ(ݔ) = lim୼௫→଴

ݔ)݂ + Δݔ) − (ݔ)݂
Δݔ  

we define the partial derivatives: 
ݑ߲
ݔ߲ = ,ݔ)௫ݑ (ݐ = lim୼௫→଴

ݔ)ݑ + Δݔ, (ݐ − ,ݔ)ݑ (ݐ
Δݔ  

ݑ߲
ݐ߲ = ,ݔ)௧ݑ (ݐ = lim୼௧→଴

,ݔ)ݑ ݐ + Δݐ) − ,ݔ)ݑ (ݐ
Δݐ  

Here డ௨
డ௧  is read as “the partial derivative of ݑ with respect to ݐ”. Like ݑ, both partial derivatives are 

functions of ݔ and ݐ. Physically ݑ௫(ݔ, ,ݔ) direction at the point ݔ in the ݑ is the slope of (ݐ  and ,(ݐ
,ݔ)௧ݑ  .direction ݐ in the ݑ is the slope of (ݐ
The rules of partial differentiation follow naturally from the rules of normal differentiation. If we 
define: 

(ݔ)݂ = ,ݔ)ݑ  (଴ݐ
(ݐ)݃ = ,଴ݔ)ݑ  (ݐ

then using the definition of differentiation we find: 
݂ᇱ(ݔ) = ݑ߲

ฬ௧ୀ௧బݔ߲
= ,ݔ)௫ݑ  (଴ݐ

݃ᇱ(ݐ) = ݑ߲
ݐ߲ ฬ௫ୀ௫బ

= ,଴ݔ)௧ݑ  (ݐ

We can therefore calculate డ௨
డ௫ by finding ௗ௨

ௗ௫ where ݐ is assumed to be constant, and similarly, can 
calculate డ௨

డ௧  by finding ௗ௨
ௗ௧  where ݔ is held constant. 

Example 
Let 

,ݔ)ݑ (ݐ = ݐଶݔ + ݐݔ3 ݐ3 + ݔ
ݐ  
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Then: 
ݑ߲
ݔ߲ = ݐݔ2 + ݐ3 + 1

ݐ  (held constant ݐ)          
ݑ߲
ݐ߲ = ଶݔ + ݔ3 − 3 − ݔ

ଶݐ  (held constant ݔ)  
A function can be partially differentiated multiple times; this is denoted by: 

߲௡ݑ
௡ݔ߲  or ߲௡ݑ

௡ݐ߲  
An alternative notation is: 

߲ଶݑ
ଶݔ߲ = ,ݔ)௫௫ݑ  (ݐ
߲ଶݑ
ଶݐ߲ = ,ݔ)௧௧ݑ  (ݐ

A Partial Differential Equation (PDE) is any equation relating an unknown function to its partial 
derivatives. The general theory of PDEs is not well understood; indeed, for most PDEs it is still 
unknown whether solutions exist. In spite of this, PDEs are ubiquitous in physics, chemistry, 
economics and biological modelling (James, 1993, p. 616). 
2.2 Derivation of the 1-Dimensional Heat Equation 
The heat equation is a simple PDE, and unlike most can be solved. We shall now show how, by using 
partial derivatives, the 1-dimensional heat equation can be derived from a set of physical 
assumptions. Assume we have a rod with a cross sectional area of A, such that: 

1. The temperature throughout a cross section is constant 
2. No heat escapes through the surface of the rod 
3. No heat is created or destroyed within the rod 
4. The rod is homogenous, with constant density ߩ, thermal conductivity ܭ and specific heat 

capacity ܿ 
Let the temperature at point ݔ and time ݐ be given by ݔ)ݑ,  To derive the heat equation, we shall .(ݐ
also use the empirical laws (Zill & Cullen, 1992, pp. 771-772): 

i. The heat energy per unit volume ܳ in an object of mass ݉ is given by ܳ =  .ݑܿ݉
ii. The rate of heat flow ܳ௧ through a cross section is proportional to the area ܣ multiplied by 

 :௫ݑ
ܳ௧ =  ௫ݑܣܭ−

Let us now take a thin slice of the rod from ݔ to ݔ + Δݔ, and let the heat in the slice be ܳ(ݐ). This 
slice has mass: 

݉ =  ݔΔܣߩ
∴ (ݐ)ܳ =  ݑܿ ݔΔܣߩ
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Partially differentiating with respect to ݐ gives: 
ܳ௧ = ߩ Δݑ ܿݔ௧ 

The rate of change of heat contained in the slice is equal to the heat flowing through the ends of the 
slice, as no heat is created or destroyed within the slice. Thus: 

ܳ௧ = ൫−ݑܣܭ௫(ݔ, ൯(ݐ − ൫−ݑܣܭ௫(ݔ + Δݔ, ൯(ݐ = ܭ ൫ݑ௫(ݔ + Δݔ, (ݐ − ,ݔ)௫ݑ  ൯(ݐ
Equating the two expressions for ܳ(ݐ): 

ݔ)௫ݑ൫ܣܭ + Δݔ, (ݐ − ,ݔ)௫ݑ ൯(ݐ = ௧ݑ ܿݔΔܣߩ  
∴ ௧ݑ = ܿܭ

ߩ
ݔ)௫ݑ + Δݔ, (ݐ − ,ݔ)௫ݑ (ݐ

Δݔ  

Let ݇ = ௄௖
ఘ , known as the thermal diffusivity of the material, noting that it always positive, and let 

Δݔ → 0. From the definition of a partial derivative: 
∴ ௧ݑ =  ௫௫ݑ݇

We have arrived at: 
ݑ߲
ݐ߲ = ݇ ߲ଶݑ

ଶݔ߲ , ݇ > 0 
and this completes our derivation. 
The heat equation also describes the diffusion of a substance through a liquid. According to Fick’s 
Second Law of diffusion: 

߲߶
ݐ߲ = ܦ ߲ଶ߶

ଶݔ߲  
where ߶ is the concentration of a dissolved substance, and ܦ is the positive diffusion constant 
(Zielinski, 2006). This is another form of the heat equation. More generally, any physical process 
involving diffusion, whether of heat, a dissolved substance, genetic material, or information about 
option pricing (Rouah, 2005), can be modelled using the heat equation.  
The heat equation is also important in the study of fluid dynamics, appearing in problems of one-
dimensional laminar flow as well as describing the motion of compressible liquids through porous 
materials. Finally, the voltage ݔ)ݒ,  in a wire with no leakage also solves the heat equation (ݐ
(Carslaw & Jaeger, 1959, pp. 28-29). 
2.3 Principle of Superposition 
Let the functions ݑଵ  and ݑଶ both solve the heat equation: 

݇ ߲ଶݑଵ
ଶݔ߲ − ଵݑ߲

ݐ߲ = 0 
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݇ ߲ଶݑଶ
ଶݔ߲ − ଶݑ߲

ݐ߲ = 0 
Adding these two equations: 

0 = ݇ ߲ଶݑଵ
ଶݔ߲ − ଵݑ߲

ݐ߲ + ݇ ߲ଶݑଶ
ଶݔ߲ − ଶݑ߲

ݐ߲ = ݇ ߲ଶ(ݑଵ + (ଶݑ
ଶݔ߲ − ଵݑ)߲ + (ଶݑ

ݐ߲  
and therefore ݑଵ +  ଵ into the heatݑଶ also solve the heat equation. Now let us substitute ܿଵݑ
equation, where ܿଵ is a constant: 

݇ ߲ଶ(ܿଵݑଵ)
ଶݔ߲ − ߲(ܿଵݑଵ)

ݐ߲ = ݇ܿଵ
߲ଶݑଵ
ଶݔ߲ − ܿଵ

ଵݑ߲
ݐ߲ = ܿଵ ቆ݇ ߲ଶݑଵ

ଶݔ߲ − ଵݑ߲
ݐ߲ ቇ = 0 

Combining these facts gives the following theorem: 
 Theorem 1: Linearity of Heat Equation 
 If both ݑଵ and ݑଶ solve the heat equation, then so does: 

ܿଵݑଵ + ܿଶݑଶ 
 for all constants ܿଵ and ܿଶ. 
We can extend Theorem 1 by deriving an infinite set of solutions ሼݑଵ, ,ଶݑ … ሽ, all of which solve the 
heat equation. In this case, by repeated application of Theorem 1 we find: 

෍ ܿ௞ݑ௞
ஶ

௞ୀଵ
 

is also a solution to the heat equation, where ܿଵ, ܿଶ … are constants. This is called the principle of 
superposition (Zill & Cullen, 1992, p. 768). 
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3. Boundary-Value Problems 
3.1 Introduction 
We have discussed the mathematical meaning of the heat equation. Now we shall demonstrate its 
application toward solving physical problems. A boundary-value problem requires the finding of 
a ݔ)ݑ,  :satisfying both initial conditions (ݐ

,ݔ)ݑ 0) = ,(ݔ)݂ ݔ ∈ (0,  (ܮ
specifying the state of the system at ݐ = 0, and also conditions describing the behaviour of the 
system’s endpoints. These latter conditions are known as boundary conditions. Together they 
determine a unique solution, allowing us to predict heat flow within the rod.   
3.2 Boundary Conditions 
Various boundary conditions are possible for the heat equation. In this essay, we shall explore three 
important conditions for which the heat equation can be solved using Fourier series. 
Let ݔ଴ be an endpoint of a rod lying on the x-axis. The Dirichlet condition is: 

,଴ݔ)ݑ (ݐ = ܽ 
This states that the endpoint is held at a fixed temperature ܽ. For instance, if the end of a rod is held 
in an ice bath of temperature 0, then the temperature of the rod at the endpoint will also be at zero 
temperature.  
The Neumann condition: 

,଴ݔ)௫ݑ (ݐ = ܽ 
When we derived the heat equation, we used the empirical law: 

ܳ௧ =  ௫ݑܣܭ−
From this, we can conclude that if ݑ௫(ݔ଴, (ݐ = ܽ, then: 

ܳ௧ =  ܽܣܭ−
The Neumann condition is thus equivalent to stating that heat flow through the endpoint occurs at a 
constant rate. If ܽ = 0, no heat flow occurs; this represents a rod where the endpoint is insulated. 
We shall examine a rod lying between ݔ = 0 and ݔ =  Using these two conditions, we have the .ܮ
following boundary-value problems, which we must solve for the initial condition ݔ)ݑ, 0) =  :(ݔ)݂
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1. Dirichlet Problem:  

,0)ݑ (ݐ = ܽ 
,ܮ)ݑ (ݐ = ܾ 

2. Neumann Problem: 
,௫(0ݑ (ݐ =  ݎ
,ܮ)௫ݑ (ݐ =  ݎ

We can add to this a third possible boundary value problem. Let us say we have a ring, connecting to 
itself at the endpoints. This problem is of both theoretic and historic interest, as it to this problem 
that Fourier first applied his Fourier series, and was also the first experimentally verified solution 
(Carslaw & Jaeger, 1959, p. 160): 

3. Fourier’s Ring: 
,0)ݑ (ݐ = ,ܮ)ݑ  (ݐ
,௫(0ݑ (ݐ = ,ܮ)௫ݑ  (ݐ

3.3 Linear and Nonlinear Boundaries 
Before we can solve the boundary-value problems posed previously, we need some background 
theory. We shall begin with a definition: 

Definition: A boundary condition is said to be linear if, for any functions ݔ)ݑ, ,ݔ)ݒ and (ݐ  (ݐ
satisfying the boundary conditions, all linear combinations: 

ܿଵݔ)ݑ, (ݐ + ܿଶݔ)ݒ, ,(ݐ ܿଵ, ܿଶ ∈ ℝ 
also satisfy the boundary conditions. The boundary condition is otherwise nonlinear. 

The condition: 
,0)ݑ (ݐ = 0 

is linear, because, if ݑଵ and ݑଶ both solve the boundary condition, then: 
ܿଵݑଵ(0, (ݐ + ܿଶݑଶ(0, (ݐ = 0 

and thus so does ܿଵݑଵ + ܿଶݑଶ. However, if we study the more general condition: 
,0)ݑ (ݐ = ܽ 

then if ݑଵ and ݑଶ both solve the boundary conditions: 
ܿଵݑଵ(0, (ݐ + ܿଶݑଶ(0, (ݐ = ܿଵܽ + ܿଶܽ = ܽ(ܿଵ + ܿଶ) ≠ 0 ∀ ܿଵ, ܿଶ ∈ ℝ 

Thus this condition is nonlinear. 
From the definition of a linear boundary condition, if ݑଵ satisfies a linear boundary condition, then 
so must: 

ଵݑ − ଵݑ = 0 
Therefore, ݔ)ݑ, (ݐ = 0 satisfies all linear boundary conditions.  
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We can use this to classify the boundary conditions stated in the previous section. Table 1 shows the 
linear and nonlinear cases of these conditions, and serves as a summary of this section. 
Boundary –Value Problem Linear Case Nonlinear Case 
Dirichlet Problem  0)ݑ, (ݐ = 0 

,ܮ)ݑ (ݐ = 0 
,0)ݑ (ݐ = ܽ 
,ܮ)ݑ (ݐ = ܾ 

Neumann Problem ݑ௫(0, (ݐ = 0 
,ܮ)௫ݑ (ݐ = 0 

,௫(0ݑ (ݐ =  ݎ
,ܮ)௫ݑ (ݐ =  ݎ

Fourier’s Ring 0)ݑ, (ݐ = ,ܮ)ݑ  (ݐ
,௫(0ݑ (ݐ = ,ܮ)௫ݑ  (ݐ

N/A 

  
 
 
 
   
  

  Table 1: Linear and nonlinear boundary conditions 
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4. Fourier Series 
4.1 Introduction 
Joseph Fourier (1768-1830) was the first mathematician to systematically solve the problems we 
described in the previous section. He did so by combining two different methods: Fourier series, 
introduced in this section, and Separation of Variables (also known as Fourier’s Method) developed 
in part 5. 
The idea of expanding a function into a series of form: 

෍ሾܽ௡ cos(݊ݔ) + ܾ௡ sin(݊ݔ)ሿ
ஶ

௡ୀ଴
 

was used by Bernoulli and Euler in the mid 18th century to explore string vibrations. However, 
Fourier was the first to suggest that all functions can be written in this form. Opposed by 
contemporary mathematicians because of his lack of rigour, it would take the work of Dirichlet and 
Riemann to prove the validity of his belief. Fourier series are now used not only for solving PDEs, but 
are essential in communications theory, and speech and image processing (James, 1993, pp. 283-
285). The next three sections are based off both the previously cited book and also (Brand, 1955, pp. 
511-539), which contains a more difficult but more rigorous chapter on the subject. 
4.2 Fourier Series 
Two functions ݂(ݔ) and ݃(ݔ) are said to be orthogonal on ሾܽ, ܾሿ if: 

න ௕ݔ݀ (ݔ)݃(ݔ)݂
௔

= 0 
If all of the functions in a set ሼ߶௡(ݔ)ሽ are mutually orthogonal, then we say that they form an 
orthogonal set. 
The set:  

ℱ = ൜1
2 , cos ൬ݔߨ

݌ ൰ , cos ൬2ݔߨ
݌ ൰ , … , sin ൬ݔߨ

݌ ൰ , sin ൬2ݔߨ
݌ ൰ … ൠ 

is an orthogonal set on the interval ሾ−݌,  ሿ. The proof is simple but long, and has been left to݌
Appendix A, as are the evaluations of many of the integrals which follow. 
A Fourier series expands a function ݂(ݔ) in terms of the elements of ℱ: 

(ݔ)݂ = ܽ଴
2 + ෍ ൤ܽ௡ cos ൬݊ݔߨ

݌ ൰ + ܾ௡ sin ൬݊ݔߨ
݌ ൰൨

ஶ

௡ୀଵ
 

where ݔ ∈ ሾ−݌,  .(ݔ)݂ ሿ. The series of constants ܽ௡ and ܾ௡ are known as the Fourier coefficients of݌
We can use the orthogonality of ℱ to calculate these coefficients, by taking the integral: 
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න ௣ݔ݀ (ݔ)݃(ݔ)݂
ି௣

 

where ݃(ݔ) = cos ቀ௞గ௫
௣ ቁ , ݊ ∈ ℤ: 

න cos ൬݇ݔߨ
݌ ൰ ௣ݔ݀(ݔ)݂

ି௣
= න cos ൬݇ݔߨ

݌ ൰ ൭ܽ଴
2 + ෍ ൤ܽ௡ cos ൬݊ݔߨ

݌ ൰ + ܾ௡ sin ൬݊ݔߨ
݌ ൰൨

ஶ

௡ୀଵ
൱ ௣ݔ݀

ି௣
  

= ܽ଴ න  cos ൬݇ݔߨ
݌ ൰ ௣ ݔ݀ 

ି௣

+ ෍ ቈܽ௡ න  cos ൬݊ݔߨ
݌ ൰ cos ൬݇ݔߨ

݌ ൰ ௣ ݔ݀ 
ି௣

+ ܾ௡ න  cos ൬݊ݔߨ
݌ ൰ sin ൬݇ݔߨ

݌ ൰ ௣ ݔ݀ 
ି௣

቉
ஶ

௡ୀଵ
 

 
= ܽ௞ න  cosଶ ൬݇݇ݔߨ

݌ ൰ ௣ ݔ݀ 
ି௣

= ܽ௞݌ 
 

∴ ܽ௞ = 1
݌ න cos ൬݇ݔߨ

݌ ൰ ௣ݔ݀(ݔ)݂
ି௣

 

Repeating this with ݃(ݔ) = sin ቀ௞గ௫
௣ ቁ gives: 

ܾ௞ = 1
݌ න sin ൬݇ݔߨ

݌ ൰ ௣ݔ݀(ݔ)݂
ି௣

 

We summarise the results of this discussion as a theorem: 
 Theorem 2: Calculating Fourier Coefficients 
 Let: 

(ݔ)݂ = ܽ଴
2 + ෍ ൤ܽ௡ cos ൬݊ݔߨ

݌ ൰ + ܾ௡ sin ൬݊ݔߨ
݌ ൰൨

ஶ

௡ୀଵ
 

 Then the coefficients must satisfy: 
ܽ௞ = 1

݌ න cos ൬݇ݔߨ
݌ ൰ ௣ݔ݀ (ݔ)݂

ି௣
 

ܾ௞ = 1
݌ න sin ൬݇ݔߨ

݌ ൰ ௣ݔ݀ (ݔ)݂
ି௣

 

Example 
We will find the Fourier coefficients of the function ݂(ݔ) =  on the interval (−1,1). Using Theorem ݔ
2, we find that: 

ܽ௡ = න ݔ cos(݊ݔߨ) ଵݔ݀ 
ିଵ
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 Figure 1: Partial Sums for ܖ = ૞ (left), 
ܖ  = ૛૞ (bottom left), and ܖ = ૚૛૞ (directly below)  

ܾ௡ = න ݔ sin(݊ݔߨ) ଵݔ݀ 
ିଵ

 
Using integration by parts: 

ܽ௡ = න ݔ cos(݊ݔߨ) ଵݔ݀ 
ିଵ

= 0 
ܾ௡ = න ݔ sin(݊ݔߨ) ଵݔ݀ 

ିଵ
= 2

ߨ݊ (−1)௡ାଵ, ݊ ∈ ℤା 
Therefore, the Fourier series is given by: 

(ݔ)݂ = ෍ 2(−1)௡ାଵ
ߨ݊

ஶ

௡ୀଵ
sin(݊ݔߨ) = 2

ߨ ቆsin(ݔߨ) − sin(2ݔߨ)
2 + sin(3ݔߨ)

3 − ⋯ ቇ 

By plotting the partial sums of this series, we can see that this does indeed converge to ݂(ݔ) on the 
interval (−1,1) shown in Figure 1. 
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4.3 Properties of Fourier Series 
In the previous section we showed that, if a function has a Fourier series, then we can calculate the 
coefficients using Theorem 3. We aim to show that a function can be represented by a Fourier 
series; that is, our calculated Fourier series actually converges to the function. Our next theorem will 
place sufficient conditions to guarantee convergence; we state it without proof. 

Theorem 3: Convergence Theorem 
Let ݂(ݔ) be bounded with a finite number of maxima and minima on an interval ሾ−݌,  ሿ. Its݌
Fourier series then converges at every continuous point. 

These conditions are known as the Dirichlet conditions. When they hold, we can write: 

(ݔ)݂ = ܽ଴
2 + ෍ ൤ܽ௡ cos ൬݊ݔߨ

݌ ൰ + ܾ௡ sin ൬݊ݔߨ
݌ ൰൨

ஶ

௡ୀଵ
 

without concern for convergence. For the physical problems we are dealing with, these conditions 
should hold, thus, convergence is not an issue. 
Fourier series can be added and subtracted, integrated and differentiated to form new Fourier 
series. This allows us to evaluate the Fourier series of a function without having to evaluate the 
integrals of Theorem 2. However, if a Fourier series is differentiated, the new series may not 
necessarily converge. 
4.4 Half-Range Expansions 
A function is odd if: 

(ݔ−)݂ =  (ݔ)݂−
and is even if: 

(ݔ−)݂ =  (ݔ)݂
The function sin(݇ݔ) is odd, and cos(݇ݔ) is even. We can simplify our evaluation of Fourier series by 
using the following properties of odd and even functions (James, 1993, p. 298): 

1. The product of two even functions is even 
2. The product of two odd functions is even 
3. The product of an even and an odd function is odd 
4. If ݂(ݔ) is odd then ׬ ௣ݔ݀ (ݔ)݂

–௣ = 0 
These properties can all easily be derived from the definition of odd and even functions. Using these 
properties, we find if ݂(ݔ) is even, then: 

න (ݔ)݂ sin ൬݊ݔߨ
݌ ൰ ௣ݔ݀ 

ି௣
= 0 
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and thus the Fourier series of ݂(ݔ) is of the form: 
(ݔ)݂ = ܽ଴

2 + ෍ ܽ௡ cos ൬݊ݔߨ
݌ ൰

ஶ

௡ୀଵ
 

Likewise, if ݂(ݔ) is odd, then: 
න (ݔ)݂ cos ൬݊ݔߨ

݌ ൰ ௣ݔ݀ 
ି௣

= 0 
in which case: 

(ݔ)݂ = ෍ ܾ௡ sin ൬݊ݔߨ
݌ ൰

ஶ

௡ୀଵ
 

When solving the heat equation, we are not interested in the interval (−݌,  but rather the (݌
interval (0,  Using our Fourier series, we shall derive three half-range series. Say we have a .(ܮ
function ݂(ݔ) defined on (0,  .(ܮ
If we let ݂(−ݔ) = ݔ ∀ (ݔ)݂ ∈ (0, ,ܮ−) then we have created an even function on the interval ,(ܮ  .(ܮ
Then ݂(ݔ) has a Fourier series comprised of cosines, and therefore, from Theorem 2: 

(ݔ)݂ = ܽ଴
2 + ෍ ܽ௡ cos ቀ݊ݔߨ

ܮ ቁ
ஶ

௡ୀଵ
, ݔ ∈ (0,  (ܮ

where 
ܽ௡ = 2

ܮ න cos ቀ݊ݔߨ
ܮ ቁ ௅ݔ݀(ݔ)݂

଴
 

This is a half-range cosine expansion. 
If instead we defined ݂(−ݔ) = ݔ ∀ (ݔ)݂− ∈ (0,  then we have created an odd function. The ,(ܮ
Fourier series is thus given by: 

(ݔ)݂ = ෍ ܾ௡ sin ቀ݊ݔߨ
ܮ ቁ

ஶ

௡ୀଵ
, ݔ ∈ (0,  (ܮ

where 
ܾ௡ = 2

ܮ න sin ቀ݊ݔߨ
ܮ ቁ ௅ݔ݀(ݔ)݂

଴
 

and this is a half-range sine expansion. 
Rather than expanding ݂(ݔ) as a sine or cosine series, we can instead expanding it as a half-range 
Fourier series by letting ݂(ݔ − (ܮ = ݔ ∀(ݔ)݂ ∈ (0,  As it is neither odd nor even, its Fourier series .(ܮ
is: 

(ݔ)݂ = ܽ଴
2 + ෍ ൤ܽ௡ cos ൬2݊ݔߨ

ܮ ൰ + ܾ௡ sin ൬2݊ݔߨ
ܮ ൰൨

ஶ

௡ୀଵ
, ݔ ∈ (0,  (ܮ
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where: 
ܽ௡ = 2

ܮ න cos ൬2݊ݔߨ
ܮ ൰ ௅ݔ݀ (ݔ)݂

଴
 

ܾ௡ = 2
ܮ න sin ൬2݊ݔߨ

ܮ ൰ ௅ݔ݀ (ݔ)݂
଴

 

Example 
We shall find the half-range expansions of ݂(ݔ) = ଶ,   0ݔ < ݔ < 1. 
Cosine Series 
We must find: 

ܽ௡ = 2 න ଶݔ cos(݊ݔߨ) ଵݔ݀
଴

 
Using integration by parts, we obtain: 

ܽ଴ = 2
3 

ܽ௡ = 4(−1)௡
݊ଶߨଶ , ݇ ∈ ℤା 

and thus: 

ଶݔ = 1
3 + 4

ଶߨ ෍ (−1)௡
݊ଶ cos(݊ݔߨ)

ஶ

௡ୀଵ
, 0 < ݔ < 1 

Sine Series 
We must calculate: 

ܾ௞ = 2 න ଶݔ sin(݊ݔߨ) ଵݔ݀
଴

 
Integration by parts gives: 

ܾ௡ = 2(−1)௡ାଵ
ߨ݊ + 4((−1)௡ − 1)

݊ଷߨଷ  
Therefore: 

ଶݔ = 2
ߨ ෍ ቆ(−1)௡ାଵ

݊ + 2((−1)௡ − 1)
݊ଷߨଶ ቇ sin(݊ݔߨ)

ஶ

௡ୀଵ
, 0 < ݔ < 1 

Fourier Series 
We calculate: 
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 Figure 2: Half-Range cosine expansion(left), sine expansion (Bottom Left), and Fourier series (Below)  

ܽ଴ = 2 න ଵݔଶ݀ݔ
଴

= 2
3 

ܽ௡ = 2 න ଶݔ cos(2݊ݔߨ) ଵݔ݀
଴

= 1
݊ଶߨଶ 

ܾ௡ = 2 න ଶݔ sin(2݊ݔߨ) ଵݔ݀
଴

= − 1
 ߨ݊

giving the Fourier series: 

ଶݔ = 1
3 + 1

ߨ ෍ ൤ 1
݊ଶߨ cos(2݊ݔߨ) − 1

݊ sin(2݊ݔߨ)൨
ஶ

௞ୀଵ
, 0 < ݔ < 1 

We can plot the functions that these three series converge, as shown in Figure 2. 
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5. General Solutions 
5.1 Separation of Variables 
Before solving boundary-value problems, we must first find a general set of solutions to the heat 
equation. This can be done using a technique known as Separation of Variables. 
Assume that: 

,ݔ)ݑ (ݐ =  (ݐ)ܶ(ݔ)ܺ
By substituting ܺ(ݔ)ܶ(ݔ) into the heat equation, we obtain: 

߲൫ܺ(ݔ)ܶ(ݐ)൯
ݐ߲ = ݇ ߲ଶ൫ܺ(ݔ)ܶ(ݐ)൯

ଶݔ߲  
Thus:  

(ݐ)ᇱܶ(ݔ)ܺ = ݇ܺᇱᇱ(ݔ)ܶ(ݐ) 
∴ ܺᇱᇱ(ݔ)

(ݔ)ܺ = (ݐ)′ܶ
 (ݐ)ܶ݇

This is only possible is if both functions are constant, thus: 
ܺᇱᇱ(ݔ)
(ݔ)ܺ = (ݐ)′ܶ

(ݐ)ܶ݇ =  ܥ
We have thus separated the PDE into the two ordinary differential equations: 

(ݔ)ܺܥ = ܺᇱᇱ(ݔ) 
(ݐ)ܶ݇ܥ =  (ݐ)′ܶ

There are three possibilities: 
Case 1: ࡯ > ૙ 
For algebraic convenience we write ܥ =  :ଶ.Thereforeߣ

ܺᇱᇱ(ݔ) =  (ݔ)ଶܺߣ
(ݐ)′ܶ =  (ݐ)ଶܶߣ݇

These differential equations are solved by: 
(ݔ)ܺ = ܿଵ݁ఒ௫ + ܿଶ݁ିఒ௫ 
(ݐ)ܶ = ܿଷ݁௞ఒమ௧ 

where ܿଵ, ܿଶ and ܿଷ are constants. Multiplying these expressions and absorbing the constant ܿଷ  
gives a general solution of the form: 

,ݔ)ఒߙ (ݐ = (ݐ)ܶ(ݔ)ܺ = ݁௞ఒమ௧൫ܿଵ݁ఒ௫ + ܿଶ݁ିఒ௫൯ 
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Case 2: ࡯ = ૙ or ૚/࡯ = ૙ 
If the latter is true then this results in the trivial solution ܺ(ݔ) = (ݐ)ܶ ,0 = 0. Assuming instead the 
former: 

ܺᇱᇱ(ݔ) = 0 
(ݐ)′ܶ = 0 

Thus: 
(ݔ)ܺ = ܿଵݔ + ܿଶ 
(ݐ)ܶ = ܿଷ  

Multiplying these together and absorbing ܿଷ gives: 
,ݔ)ߚ (ݐ = (ݐ)ܶ(ݔ)ܺ = ܿଵݔ + ܿଶ 

Case 3: ࡯ < ૙ 
For algebraic convenience we can write ܥ =  :ଶ. Thereforeߣ−

ܺᇱᇱ(ݔ) =  (ݔ)ଶܺߣ−
(ݐ)′ܶ = −݇ ଶܶ(ݐ) 

These equations must thus be of the form: 
(ݔ)ܺ = ܿଵ sin(ݔߣ) + ܿଶ cos(ݔߣ) 
(ݐ)ܶ = ܿଷ݁ିఒమ௞௧ 

Multiplying these together and absorbing ܿଷ gives: 
,ݔ)ఒߛ (ݐ = ݁ିఒమ௞௧(ܿଵ sin(ݔߣ) + ܿଶ cos(ݔߣ)) 

5.2 General Solutions of the Heat Equation 
Using separation of variables, we found three solutions to the heat equation: 

,ݔ)ఒߙ (ݐ = ݁ఒమ௞௧൫ܿଵ݁ఒ௫ + ܿଶ݁ିఒ௫൯ 
,ݔ)ߚ (ݐ = ܿଵݔ + ܿଶ 
,ݔ)ఒߛ (ݐ = ݁ିఒమ௞௧(ܿଵ sin(ݔߣ) + ܿଶ cos(ݔߣ)) 

These three different solutions are the general solutions of the heat equation, in the sense that any 
solution to the heat equation can be derived from these solutions using the principle of 
superposition. 
The first solution ߙఒ is unstable, as: 

lim௧→ஶ ,ݔ)ఒߙ (ݐ = lim௧→ஶ݁ఒమ௞௧൫ܿଵ݁ఒ௫ + ܿଶ݁ିఒ௫൯ 
becomes infinitely large for any value of ݔ. 
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Both the second and third solution are stable. The second solution ߚ is a stationary solution, as it 
does not vary with time, and the third solution ߛఒ decays exponentially over time for any value of ݔ: 

lim௧→ஶ ,ݔ)ఒߛ (ݐ = lim௧→ஶ݁ିఒమ௞௧(ܿଵ sin(ݔߣ) + ܿଶ cos(ݔߣ)) = 0 
As the boundary-value problems we shall solve always have stable solutions, we shall find that the 
solutions to these problems are comprised of terms of the form ߚ and ߛఒ. 
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6. Fourier’s Ring 
6.1 General Solution 
The first boundary-value problem we shall solve shall, like Fourier, is that of a ring. The boundary 
conditions are: 

,0)ݑ (ݐ = ,ܮ)ݑ  (ݐ
,௫(0ݑ (ݐ = ,ܮ)௫ݑ  (ݐ

We shall attempt to find functions of the form ߙఒ, ߚ, and ߛఒ satisfying these conditions. If: 
,ఒ(0ߙ (ݐ = ,ܮ)ఒߙ  (ݐ
,௫(0(ఒߙ) (ݐ = ,ܮ)௫(ఒߙ)  (ݐ

we obtain: 
݁ఒమ௞௧(ܿଵ + ܿଶ) = ݁ఒమ௞௧൫ܿଵ݁ఒ௅ + ܿଶ݁ିఒ௅൯ 
݁ఒమ௞௧ߣ(ܿଵ − ܿଶ) = ݁ఒమ௞௧2ߣ൫ܿଵ݁ఒ௅ − ܿଶ݁ିఒ௅ ൯ 

This simplifies to: 
ܿଵ + ܿଶ = ܿଵ݁ఒ௅ + ܿଶ݁ିఒ௅ 
ܿଵ − ܿଶ = ܿଵ݁ఒ௅ − ܿଶ݁ିఒ   

Adding and subtracting these two equations gives: 
2ܿଵ = 2ܿଵ݁ఒ௅  
2ܿଶ = 2ܿଶ݁ିఒ௅  

∴ ݁ఒ௅ = ݁ିఒ௅ = 1 
This is only possible if ܮߣ = 0. As ܮ is not 0, we conclude ߣ = 0, and the only solution is therefore 
the constant: 

,ݔ)଴ߙ (ݐ = ܿଵ 
Repeating this procedure with ߚ gives us the same result. We are therefore left with ߛఒ(ݔ,  :(ݐ

,ఒ(0ߛ (ݐ = ,ܮ)ఒߛ  (ݐ
,௫(0(ఒߛ) (ݐ = ,ܮ)௫(ఒߛ)  (ݐ

Therefore: 
݁ିఒమ௞௧(ܿଵ sin(0ߣ) + ܿଶ cos(0ߣ)) = ݁ିఒమ௞௧(ܿଵ sin(ܮߣ) + ܿଶ cos(ܮߣ)) 
݁ିఒమ௞௧ߣ(ܿଵ cos(0ߣ) − ܿଶ sin(0ߣ)) = ݁ିఒమ௞௧ߣ(ܿଵ cos(ܮߣ) − ܿଶ sin(ܮߣ)) 

Thus: 
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ܿଶ = ܿଵ sin(ܮߣ) + ܿଶ cos(ܮߣ) 
ܿଵ = ܿଵ cos(ܮߣ) − ܿଶ sin(ܮߣ) 

∴ ܿଵ sin(ܮߣ) + ܿଶ(cos(ܮߣ) − 1) = 0 
∴ ܿଵ(cos(ܮߣ) − 1) − ܿଶ sin(ܮߣ) = 0 

We can write this in matrix form as: 
൬ sin(ܮߣ) cos(ܮߣ) − 1

cos(ܮߣ) − 1 − sin(ܮߣ) ൰ ቀܿଵܿଶቁ = ቀ00ቁ 
There are nonzero solutions only if the matrix is singular: 

ฬ sin(ܮߣ) cos(ܮߣ) − 1
cos(ܮߣ) − 1 − sin(ܮߣ) ฬ = 0 

∴ − sinଶ(ܮߣ) − (cosଶ(ܮߣ) − 2 cos(ܮߣ) + 1) = 0 
∴ cos(ܮߣ) = 1 

∴ ܮߣ = ,݊ߨ2 ݊ ∈ ℕ 
Letting: 

௡ߣ = ݊ߨ2
ܮ , ݊ ∈ ℕ 

we find any function: 
,ݔ)௡ݑ (ݐ = ݁ିସ௞గమ௡మ

௅మ ௧ ൬ܽ௡ cos ൬2݊ݔߨ
ܮ ൰ + ܾ௡ sin ൬2݊ݔߨ

ܮ ൰൰ 
solves Fourier’s ring. By the principle of superposition, any function of the form: 

,ݔ)ݑ (ݐ = ෍ ,ݔ)௡ݑ (ݐ
ஶ

௡ୀଵ
= ܽ଴

2 + ෍ ݁ିସ௞గమ௡మ
௅మ ௧ ൬ܽ௡ cos ൬2݊ݔߨ

ܮ ൰ + ܾ௡ sin ൬2݊ݔߨ
ܮ ൰൰

ஶ

௡ୀଵ
 

solves Fourier’s Ring.  
6.2 Applying Initial Conditions 
We now need to solve the problem for the initial condition: 

,ݔ)ݑ 0) =  (ݔ)݂
Substituting ݐ = 0 into our previously found series for ݔ)ݑ,  :we find ,(ݐ

(ݔ)݂ = ܽ଴
2 + ෍ ൤ܽ௡ cos ൬2݊ߨ

ܮ ൰ + ܾ௡ sin ൬2݊ݔߨ
ܮ ൰൨

ஶ

௡ୀଵ
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This is a Fourier half-series. From our work in section 4.4, we can calculate the coefficients ܽ௡ and ܾ௡ 
to establish the solution: 

,ݔ)ݑ (ݐ = ܽ଴
2 + ෍ ݁ିସ௞గమ௡మ

௅మ ௧ ൬ܽ௡ cos ൬2݊ݔߨ
ܮ ൰ + ܾ௡ sin ൬2݊ݔߨ

ܮ ൰൰
ஶ

௡ୀଵ
 

satisfying both the boundary conditions and the initial conditions. We can summarise the results of 
this section as a theorem: 
 Theorem 4: Solving Fourier’s Ring 
 Suppose we have a ring with an initial temperature distribution given by: 

,ݔ)ݑ 0) = ,(ݔ)݂ 0 < ݔ <  ܮ
 As heat flows through the ring, the temperature at a given point and time will be given by: 

,ݔ)ݑ (ݐ = ܽ଴
2 + ෍ ݁ିସ௞గమ௡మ

௅మ ௧ ൬ܽ௡ cos ൬2݊ݔߨ
ܮ ൰ + ܾ௡ sin ൬2݊ݔߨ

ܮ ൰൰
ஶ

௡ୀଵ
 

 where: 
ܽ௡ = 2

ܮ න (ݔ)݂ cos ൬2݊ݔߨ
ܮ ൰ ௅ݔ݀ 

଴
 

ܾ௡ = 2
ܮ න (ݔ)݂ sin ൬2݊ݔߨ

ܮ ൰ ௅ݔ݀ 
଴

 
 and where ݇ is the thermal diffusivity of the ring. 
6.3 Example 
In section 4.4, we showed that: 

ଶݔ = 1
3 + 1

ߨ ෍ ൤ 1
݊ଶߨ cos(2݊ߨ) − 1

݊ sin(2݊ߨ)൨
ஶ

௡ୀଵ
, 0 < ݔ < 1 

Thus, if we have a ring with an initial temperature distribution of: 
,ݔ)ݑ 0) =  ଶݔ

then the temperature distribution is given by: 

,ݔ)ݑ (ݐ = 1
3 + 1

ߨ ෍ ݁ିସ௞௡మగమ௧ ൬ 1
݊ଶߨ cos(2݊ߨ) − 1

݊ sin(2݊ߨ)൰
ஶ

௡ୀଵ
, 0 < ݔ < ݐ   ,1 ≥ 0 

Figure 3 shows the evolution of this system over time when ݇ = 100. This reflects what intuitively 
we would expect to happen. 
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 Figure 3: The temperature distribution at, from darkest to lightest: 
࢚ = ૙,    ࢚ = ૚

ૢ ࢚    , = ૚
૜ ࢚    , = ૚ ,    ࢚ = ૜,    ࢚ = ૢ 
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7. Dirichlet Problem 
7.1 Linear Dirichlet Problem 
We shall begin by solving the linear Dirichlet Problem: 

,0)ݑ (ݐ = 0 
,ܮ)ݑ (ݐ = 0 

Substituting ݔ)ݑ, (ݐ =  :ఒ, we findߙ
,0)ݑ (ݐ = ݁௞ఒమ௧(ܿଵ + ܿଶ) = 0 
,ܮ)ݑ (ݐ = ݁௞ఒమ௧൫ܿଵ݁ఒ௅ + ܿଶ݁ିఒ௅൯ = 0 

As ݁௞ఒమ௧ ≠ 0: 
∴ ܿଵ + ܿଶ = 0 
∴ ܿଵ݁ఒ௅ + ܿଶ݁ିఒ௅ = 0 

In matrix form this is: 
ቀ 1 1

݁ఒ௅ ݁ିఒ௅ቁ ቀܿଵܿଶቁ = ቀ00ቁ 
This has nonzero solutions only if the matrix is singular: 

∴ ቚ 1 1
݁ఒ௅ ݁ିఒ ቚ = ݁ିఒ − ݁ఒ௅ = 0 

∴ ߣ = 0 
If ߣ = 0, then ܿଵ = −ܿଶ, with trivial solution: 

α஛ = 0 
This also applies to the second condition. However, by substituting into ߛఒ, we find: 

,ఒ(0ߛ (ݐ = ݁ି௞ఒమ௧(ܿଵ sin(0ߣ) + ܿଶ cos(0ߣ)) = ݁ି௞ఒమ௧ܿଶ = 0 
,ܮ)ఒߛ (ݐ = ݁ି௞ఒమ௧(ܿଵ sin(ܮߣ) + ܿଶ cos(ܮߣ)) 

Therefore: 
ܿଶ = 0 

∴ ,ܮ)ఒߛ (ݐ = ݁ି௞ఒమ௧ܿଵ sin(ܮߣ) = 0 
If ܿଵ = 0 then we have the trivial solution ߛ଴(ܮ, (ݐ = 0. Instead, we shall let sin(ܮߣ) = 0. 

∴ ܮߣ = ݊ , ݊ ∈ ℕ 
Let: 

∴ ௡ߣ = ߨ݊
ܮ , ݊ ∈ ℕ 
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We have found a series of functions 
,ݔ)௡ݑ (ݐ = ݁ି௞ఒ೙మ௧ sin(ߣ௡ݔ) 

that solve the linear Dirichlet problem. By the principle of superimposition, any function of the form: 

,ݔ)ݑ (ݐ = ෍ ,ݔ)௡ݑ (ݐ
ஶ

௡ୀଵ
= ෍ ܾ௡݁ି௞௡మగమ

௅మ ௧ sin ቀ݊ߨ
ܮ ቁݔ

ஶ

௡ୀଵ
 

is therefore a solution. 
7.2 Nonlinear Dirichlet Problem 
We shall now solve the more general Dirichlet problem: 

,0)ݑ (ݐ = ܽ 
,ܮ)ݑ (ݐ = ܾ 

We can find a solution of form ݔ)ߚ,  :that solves these conditions. Substituting (ݐ
,0)ߚ (ݐ = ܿଵ0 + ܿଶ = ܿଶ = ܽ 
,ܮ)ߚ (ݐ = ܿଵܮ + ܿଶ = ܾ 

Solving for ܿଵ and ܿଶ gives us: 
,ݔ)ߚ (ݐ = ܾ − ܽ

ܮ ݔ + ܽ 
as a solution to the boundary-value problem. If we add this to the solution found in the previous 
section: 

,ݔ)ݑ (ݐ = ܽ + ܾ − ܽ
ܮ ݔ + ෍ ܾ௡݁ି௞௡మగమ

௅మ ௧ sin ቀ݊ߨ
ܮ ቁݔ

ஶ

௡ୀଵ
 

then this also solves the boundary conditions and the heat equation. This is the general solution to 
the general Dirichlet problem. Notice that, by taking the limit as ݐ → ∞: 

lim௧→ஶ ,ݔ)ݑ (ݐ = lim௧→ஶ ܽ + ܾ − ܽ
ܮ ݔ + ෍ ܾ௡݁ି௞௡మగమ

௅మ ௧ sin ቀ݊ߨ
ܮ ቁݔ

ஶ

௡ୀଵ
=  ܽ + ܾ − ܽ

ܮ  ݔ

and thus, regardless of the initial conditions, the steady-state solution is always the linear function: 
lim௧→ஶ ,ݔ)ݑ (ݐ =  ܽ + ܾ − ܽ

ܮ  ݔ

7.3 Applying the Initial Conditions 
We shall now solve our problem for the initial-value conditions 

,ݔ)ݑ 0) =  (ݔ)݂
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By substituting ݐ = 0 into the series for ݔ)ݑ,  :found in the previous section, we find (ݐ

(ݔ)݂ = ܽ + ܾ − ܽ
ܮ ݔ + ෍ ܾ௡ sin ቀ݊ߨ

ܮ ቁݔ
ஶ

௡ୀଵ
 

∴ (ݔ)݂ − ܽ − ܾ − ܽ
ܮ ݔ = ෍ ܾ௡ sin ቀ݊ߨ

ܮ ቁݔ
ஶ

௡ୀଵ
 

This is a half-range sine series. Using our work in section 4.4, we can thus expand the function 
(ݔ)݂ − ܽ − ௕ି௔

௅  :into a half-range sine series in order to find the function ݔ

,ݔ)ݑ (ݐ = ܽ + ܾ − ܽ
ܮ ݔ + ෍ ܾ௡݁ି௞௡మగమ

௅మ ௧ sin ቀ݊ߨ
ܮ ቁݔ

ஶ

௡ୀଵ
 

satisfying both the boundary and initial conditions. We can summarise the results of this section as a 
theorem. 
 Theorem 5: Solving Dirichlet Problems 
 The solution to the Dirichlet Problem: 

,0)ݑ (ݐ = ܽ 
,0)ݑ (ݐ = ܾ 

 with initial condition: 
,ݔ)ݑ                                    0) = ,(ݔ)݂ 0 < ݔ <  ܮ

 is the function: 
,ݔ)ݑ (ݐ = ܽ + ܾ − ܽ

ܮ ݔ + ෍ ܾ௡݁ି௞௡మగమ
௅మ ௧ sin ቀ݊ߨ

ܮ ቁݔ
ஶ

௡ୀଵ
 

 where: 
ܾ௡ = 2

ܮ න ൬݂(ݔ) − ܽ − ܾ − ܽ
ܮ ൰ݔ sin ቀ݊ߨ

ܮ ቁݔ ௅ݔ݀ 
଴

 

7.4 Example 
In section 4.2, we showed that: 

ݔ = ෍ 2(−1)௡ାଵ
ߨ݊ sin(݊ݔߨ)

ஶ

௡ୀଵ
= 2

ߨ ቆsin(ݔߨ) − sin(2ݔߨ)
2 + sin(3ݔߨ)

3 − ⋯ ቇ 

when ݔ ∈ (−1,1). Thus, if we have initial condition: 
,ݔ)ݑ 0) =  ݔ

along with boundary conditions: 
,0)ݑ (ݐ = ,1)ݑ (ݐ = 0 
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 Figure 4: Temperature distributions, from darkest to lightest:                   ࢚ = ૙, ࢚ = ૙. ૚૛૞,  ࢚ = ૙. ૞,  ࢚ = ૛,  ࢚ = ૡ,  ࢚ = ૜૛. 

then, from the previous section, we know that the temperature distribution over time will be given 
by: 

,ݔ)ݑ (ݐ = ෍ 2(−1)௡ାଵ
ߨ݊ sin(݊ݔߨ) ݁ି௞௡మగమ௧

ஶ

௡ୀଵ
 

Figure 3 shows the evolution of the temperature distribution for this system when ݇ = 1. 

 
 
 Let us now impose the conditions: 

,ݔ)ݑ 0) =  ݔ
,0)ݑ (ݐ = 1 
,1)ݑ (ݐ = 0 

In this situation we find that the solution must be of the form 

ܽ + ܾ − ܽ
ܮ ݔ + ෍ ܾ௡݁ି௞௡మగమ

௅మ ௧ sin ቀ݊ߨ
ܮ ቁݔ

ஶ

௡ୀଵ
= 1 − ݔ + ෍ ܾ௡݁ି௞௡మగమ௧ sin(݊ݔߨ)

ஶ

௡ୀଵ
 

where: 

ݔ = 1 − ݔ + ෍ ܾ௡ sin(݊ݔߨ)
ஶ

௡ୀଵ
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 Figure 5: Temperature distributions, from darkest to lightest:                   ࢚ = ૙, ࢚ = ૙. ૞,  ࢚ = ૚,  ࢚ = ૛,  ࢚ = ૝,  ࢚ = ૡ. 

∴ ݔ2 − 1 = ෍ ܾ௡ sin(݊ݔߨ)
ஶ

௡ୀଵ
 

Using section 4.4, we can calculate the coefficients using: 
ܾ௡ = 2

ܮ න sin ቀ݊ݔߨ
ܮ ቁ ௅ݔ݀(ݔ)݂

଴
= 2 න sin(݊ݔߨ) ݔ2) − ଵݔ݀(1

଴
 

= 2ሾ2 sin(݊ߨ) − (ߨ݊)cos)ߨ݊ + 1)ሿ
ଶ݊ଶߨ  

= ൝
0, ݊ is odd

− 4
ߨ݊ , ݊ is even   

Therefore: 

,ݔ)ݑ (ݐ = 1 − ݔ − 4
ߨ ෍ ݁ିସ௞௡మగమ௧ sin(2݊ݔߨ)

2݊
ஶ

௡ୀଵ
 

Figure 5 shows the evolution of this temperature distribution for ݇ = 1. 
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8. Neumann Problem 
8.1 Linear Neumann Problem 
Let: 

,௫(0ݑ (ݐ = 0 
,ܮ)௫ݑ (ݐ = 0 

The functions ߙఒ and ߚ only solve these boundary conditions if they are constant. Once again, we 
can find a series of ߛఒ that solve these conditions: 

,௫(0(ఒߛ) (ݐ = ݁ି௞ఒమ௧(ܿଵߣ cos(0ߣ) − ܿଶߣ sin(0ߣ)) = ܿଵି݁ߣ௞ఒమ௧ = 0 
,ܮ)௫(ఒߛ) (ݐ = ݁ି௞ఒమ௧(ܿଵߣ cos(ܮߣ) − ܿଶߣ sin(ܮߣ)) = 0 

Thus: 
ܿଵߣ = 0 
ܿଵߣ cos(ܮߣ) + ܿଶߣ sin(ܮߣ) = 0 

Either ܿଵ = 0 or ߣ = 0. If ߣ = 0 then ߛ଴ is constant, otherwise: 
ܿଵ = 0 

If this is the case, then: 
ܿଶߣ sin(ܮߣ) = 0 

If ܿଶ = 0, then we have the trivial solution ߛఒ = 0. Instead, we shall let sin(ܮߣ) = 0. 
∴ ܮߣ = ,ߨ݊ ݊ ∈ ℕ 

Let: 
∴ ௡ߣ = ߨ݊

ܮ , ݊ ∈ ℕ 
The functions: 

,ݔ)௡ݑ (ݐ = ݁ି௞ఒ೙మ௧ cos(ߣ௡ݔ) 
therefore solve the boundary conditions. By the principle of superimposition, any function of the 
form: 

,ݔ)ݑ (ݐ = ܽ଴ + ෍ ܽ௡݁ି௞௡మగమ
௅మ ௧ cos ቀ݊ߨ

ܮ ቁݔ
ஶ

௡ୀଵ
 

solves the Neumann boundary conditions. 
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8.2 Nonlinear Neumann Problem 
The nonlinear Neumann Problem is: 

,௫(0ݑ (ݐ =  ݎ
,ܮ)௫ݑ (ݐ =  ݎ

Letting ݔ)ݑ, (ݐ = ܿଵݔ + ܿଶ gives us the conditions: 
ܿଵ =  ݎ
ܿଵ =  ݎ

The particular solution we seek is thus: 
,ݔ)݌ (ݐ =  ݔݎ

Any function of the form: 

,ݔ)ݑ (ݐ = ෍ ,ݔ)௡ݑ (ݐ
ஶ

௡ୀ଴
= ܽ଴

2 + ݔݎ + ෍ ܽ௡݁ି௞௡మగమ
௅మ ௧ cos ቀ݊ߨ

ܮ ቁݔ
ஶ

௡ୀଵ
 

solves the general Neumann conditions. 
8.3 Applying Initial Conditions 
By substituting ݐ = 0 into our series solution, we find that, if: 

(ݔ)݂ = ,ݔ)ݑ 0) 
then: 

(ݔ)݂ = ܽ଴
2 + ݔݎ + ෍ ܽ௡ cos ቀ݊ߨ

ܮ ቁݔ
ஶ

௡ୀଵ
 

∴ (ݔ)݂ − ݔݎ = ܽ଴
2 + ෍ ܽ௡ cos ቀ݊ߨ

ܮ ቁݔ
ஶ

௡ୀଵ
 

This is a half-range cosine series. By expanding the function ݂(ݔ) −  into a half-range cosine ݔݎ
series, we can then solve both the boundary conditions and the initial conditions with: 

,ݔ)ݑ (ݐ = ܽ଴
2 + ݔݎ + ෍ ܽ௡݁ି௞௡మగమ

௅మ ௧ cos ቀ݊ߨ
ܮ ቁݔ

ஶ

௡ୀଵ
 

We can summarise the results of this section as a theorem. 
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 Theorem 6: Solving Neumann Problems 
 The solution to the Neumann Problem: 

,௫(0ݑ (ݐ =  ݎ
,௫(0ݑ (ݐ =  ݎ

 with initial condition: 
,ݔ)ݑ                                    0) = ,(ݔ)݂ 0 < ݔ <  ܮ

 is the function: 
,ݔ)ݑ (ݐ = ܽ଴

2 + ݔݎ + ෍ ܽ௡݁ି௞௡మగమ
௅మ ௧ cos ቀ݊ߨ

ܮ ቁݔ
ஶ

௡ୀଵ
 

 where: 
ܽ௡ = 2

ܮ න (ݔ)݂) − (ݔݎ cos ቀ݊ߨ
ܮ ቁݔ ௅ݔ݀ 

଴
 

8.4 Example 
We shall solve the linear Neumann problem with the initial condition: 

,ݔ)ݑ 0) = (ݔ)݂ = ൜1, 0 < ݔ < 0.50, 0.5 < ݔ < 1 
From the previous section, we know the solution to this problem is given by: 

,ݔ)ݑ (ݐ = ܽ଴
2 + ෍ ܽ௡݁ି௞௡మగమ௧ cos(݊ݔߨ)

ஶ

௡ୀଵ
 

where: 
ܽ௡ = 2 න cos(݊ݔߨ) ଵݔ݀(ݔ)݂

଴
 

= 2 න cos(݊ݔߨ) ଴.ହݔ݀
଴

 

= ൞
1, ݊ = 02

ߨ݊ , ݊ is odd
0, ݊ is even

 

Thus: 

,ݔ)ݑ (ݐ = 1
2 + 2

ߨ ෍ cos൫(2݊ + ൯ݔߨ(1
2݊ + 1 ݁ି௞(ଶ௡ାଵ)మగమ௧

ஶ

௡ୀ଴
 

Figure 6 shows the evolution of this function over time, for ݇ = 10. 
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 Figure 6: Temperature distributions, from darkest to lightest: 
࢚                   = ૙, ࢚ = ૜ି૜,  ࢚ = ૜ି૛,  ࢚ = ૜ି૚,  ࢚ = ૚,  ࢚ = ૜. 

 
 
 
 
 
 
 
 
 
 
 
 

As a final example, let us study the Neumann problem with conditions: 
,ݔ)ݑ 0) = 0 
,௫(0ݑ (ݐ = 1 
,ܮ)௫ݑ (ݐ = 1 

The general solution to this problem is: 

,ݔ)ݑ (ݐ = ܽ଴
2 + ݔ + ෍ ܽ௡݁ି௞௡మగమ௧ cos(݊ݔߨ)

ஶ

௡ୀଵ
 

Substituting ݐ = 0 gives us: 

,ݔ)ݑ 0) = 0 = ܽ଴
2 + ݔ + ෍ ܽ௡ cos(݊ݔߨ)

ஶ

௡ୀଵ
 

∴ ݔ− = ܽ଴
2 + ෍ ܽ௡ cos(݊ݔߨ)

ஶ

௡ୀଵ
 

Therefore: 
ܽ௡ = −2 න cos(݊ݔߨ) ଵݔ݀ ݔ

଴
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 Figure 7: Temperature distributions, from darkest to lightest:                   ࢚ = ૙, ࢚ = ૙. ૚૛૞,  ࢚ = ૙. ૛૞,  ࢚ = ૙. ૞,  ࢚ = ૚,  ࢚ = ૛. 

= ൞
−1, ݊ = 04

ଶ݊ଶߨ , ݊ is odd
0, ݊ is even

 

Thus: 

,ݔ)ݑ (ݐ = ݔ − 1
2 + 4

ଶߨ ෍ ݁ି௞௡మగమ௧ cos(݊ݔߨ)
݊ଶ

ஶ

௡ୀଵ
 

Figure 7 shows the evolution of this system, for ݇ = 10. 
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 Table 2: Summary of Boundary-Value Problems 

 Table 3: Summary of Solutions to the Heat Equation 

9. Conclusion 
Our research question was: 

How Fourier series and the method of Separation of Variables can be used to solve the 
One-dimensional Heat Equation. 

First, we introduced and derived the one-dimensional heat equation, showing its application in 
physical problems. We then explored the Dirichlet, Neumann, and Fourier’s Ring boundary-value 
problems. A summary of these problems is shown in Table 2. 
 
 Dirichlet Neumann Fourier’s Ring 
Boundary 
Conditions 

,0)ݑ (ݐ = ܽ 
,ܮ)ݑ (ݐ = ܾ 

,௫(0ݑ (ݐ =  ݎ
,ܮ)௫ݑ (ݐ =  ݎ

,0)ݑ (ݐ = ,ܮ)ݑ  (ݐ
,௫(0ݑ (ݐ = ,ܮ)௫ݑ  (ݐ

Linear Case 0)ݑ, (ݐ = 0 
,ܮ)ݑ (ݐ = 0 

,௫(0ݑ (ݐ = 0 
,ܮ)௫ݑ (ݐ = 0 

,0)ݑ (ݐ = ,ܮ)ݑ  (ݐ
,௫(0ݑ (ݐ = ,ܮ)௫ݑ  (ݐ

Steady State 
Solution  ܽ + ܾ − ܽ

ܮ  N/A ݔݎ ݔ

 
The theory of Fourier series was then introduced, showing how to represent a function as an infinite 
sum of sines and cosines. Separation of variables was used to find a series solution for the boundary 
conditions, and we then applied Fourier series to solve for the initial conditions. This allowed us to 
solve all three boundary-value problems. Our results are shown in Table 3.  
 
 

Series 
Solution 

Dirichlet 
 
,ݔ)ݑ (ݐ = ܽ + ܾ − ܽ

ܮ ݔ + ෍ ܾ௡݁ି௞௡మగమ
௅మ ௧ sin ቀ݊ߨ

ܮ ቁݔ
ஶ

௡ୀଵ
 

Neumann 
 
,ݔ)ݑ (ݐ = ܽ଴

2 + ݔݎ + ෍ ܽ௡݁ି௞௡మగమ
௅మ ௧ cos ቀ݊ߨ

ܮ ቁݔ
ஶ

௡ୀଵ
 

Fourier’s Ring 
 

,ݔ)ݑ (ݐ = ܽ଴
2 + ෍ ݁ିସ௞గమ௡మ

௅మ ௧ ൬ܽ௡ cos ൬2݊ݔߨ
ܮ ൰ + ܾ௡ sin ൬2݊ݔߨ

ܮ ൰൰
ஶ

௡ୀଵ
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Series at ܜ =
૙ and 

Fourier 
Expansion 

used 

Dirichlet 
 

,ݔ)ݑ 0) = ܽ + ܾ − ܽ
ܮ ݔ + ෍ ܾ௡ ݊݅ݏ ቀ݊ߨ

ܮ ቁݔ
ஶ

௡ୀଵ
 

Fourier Half-Range Sine Expansion 

Neumann 
 

,ݔ)ݑ 0) = ܽ଴
2 + ݔݎ + ෍ ܽ௡ ݏ݋ܿ ቀ݊ߨ

ܮ ቁݔ
ஶ

௡ୀଵ
 

Fourier Half-Range Cosine Expansion 

Fourier’s Ring 
 

,ݔ)ݑ 0) = ܽ଴
2 + ෍ ݁ିସ௞గమ௡మ

௅మ ௧ ൬ܽ௡ ݏ݋ܿ ൬2݊ݔߨ
ܮ ൰ + ܾ௡ ݊݅ݏ ൬2݊ݔߨ

ܮ ൰൰
ஶ

௡ୀଵ
 

Fourier Half-Range Full Expansion 

Coefficients 

Dirichlet 
 

ܾ௡ = 2
ܮ න ൬݂(ݔ) − ܽ − ܾ − ܽ

ܮ ൰ݔ ݊݅ݏ ቀ݊ߨ
ܮ ቁݔ ௅ݔ݀ 

଴
 

Neumann 
 

ܽ௡ = 2
ܮ න (ݔ)݂) − (ݔݎ ݏ݋ܿ ቀ݊ߨ

ܮ ቁݔ ௅ݔ݀ 
଴

 

Fourier’s Ring 
 

ܽ௡ = 2
ܮ න (ݔ)݂ ݏ݋ܿ ൬2݊ݔߨ

ܮ ൰ ௅ݔ݀ 
଴

 
ܾ௡ = 2

ܮ න (ݔ)݂ ݊݅ݏ ൬2݊ݔߨ
ܮ ൰ ௅ݔ݀ 

଴
 

 In this essay, we have explored the simplest cases of an important area of study. Our combined 
method of separation of variables and Fourier series is applicable to solving other one-dimensional 
PDE’s, such as the wave equation. It can also be extended to using Fourier series based on more 
advanced orthogonal functions, such as Legendre and Bessel functions, allowing us to solve for more 
complicated boundary conditions. Higher dimensional analogues of the heat equation can also be 
solved with such methods. 
Other solution techniques also exist. Laplace transforms and conformal mappings both provide 
analytic solutions to the equation. However, numerical methods are also becoming increasing 
important, particularly with the adsvent of high-speed computing. The curious reader is directed to 
the book Conduction of Heat in Solids by H. S. Carslaw and J. C. Jaeger, which is the classic 
encyclopaedic reference text on the topic, containing a compendium of solutions to the heat 
equation. 
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Appendix A: Calculation of Integrals 
In this appendix, we shall calculate the various integrals used in the text. 
Page 12 
We shall now show that the set: 

ℱ = ൜1
2 , cos ൬ݔߨ

݌ ൰ , cos ൬2ݔߨ
݌ ൰ , … , sin ൬ݔߨ

݌ ൰ , sin ൬2ݔߨ
݌ ൰ … ൠ 

is an orthogonal set. We will first prove this on the interval ሾ−ߨ,  :ሿ. Asߨ
sin(−ܽݔ) cos(−ܾݔ) = − sin(ܽݔ) cos(ܾݔ) 
∴ න sin(ܽݔ) cos(ܾݔ) గݔ݀

ିగ
= න sin(ܽݔ) cos(ܾݔ) గݔ݀

଴
+ න sin(ܽݔ) cos(ܾݔ) ଴ݔ݀

ିగ
 

= න sin(ܽݔ) cos(ܾݔ) గݔ݀
଴

− න sin(ܽݔ) cos(ܾݔ) గݔ݀
଴

= 0 
and thus sin(ܽݔ) and cos(ܾݔ) are orthogonal for any ܽ and ܾ. As this holds true when ܾ = 0, 
sin(ܽݔ) is orthogonal to 1/2. This is also true for cos(ܾݔ), as: 

න cos(ܾݔ) గݔ݀
ିగ

= sin(ܾߨ)
ܾ − sin(−ܾߨ)

ܾ = 0 ∀ ܾ ∈ ℤ, ܾ ≠ 0 
If ܽ ≠ ܾ and ܽ, ܾ ∈ ℤା, then: 

න cos൫(ܽ + ൯ݔ(ܾ గݔ݀
ିగ

= 0 
න cos൫(ܽ − ൯ݔ(ܾ గݔ݀

ିగ
= 0 

Using trigonometric identities, we can write: 
න cos൫(ܽ + ൯ݔ(ܾ గݔ݀

ିగ
= න cos(ܽݔ) cos(ܾݔ) − sin(ܽݔ) sin(ܾݔ) గݔ݀

ିగ
 

න cos൫(ܽ − ൯ݔ(ܾ గݔ݀
ିగ

= න cos(ܽݔ) cos(ܾݔ) + sin(ܽݔ) sin(ܾݔ) గݔ݀
ିగ

 
By adding or subtracting these two equations we gain the following formulae: 

∴ න cos(ܽݔ) cos(ܾݔ) గݔ݀
ିగ

= 0 
∴ න sin(ܽݔ) sin(ܾݔ) గݔ݀

ିగ
= 0 

The functions ቄ1, cos ቀ௞గ௫
௣ ቁ , sin ቀ௞గ௫

௣ ቁ : ݇ ∈ ℤାቅ are therefore orthogonal on the interval ሾ−ߨ,  ሿ.Thisߨ
can be generalised to any interval ሾ−݌, ݑ ሿ by making the substitution݌ = ௫௣

గ : 
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න గݔ݀ (ݔ)݂
ିగ

= න ݂ ൬ߨݑ
݌ ൰ ߨ

݌ ௣ݑ݀
ି௣

 

If ׬ గݔ݀ (ݔ)݂
ିగ = 0, it follows that: 

න ݂ ൬ߨݑ
݌ ൰ ௣ݑ݀

ି௣
 

The functions ቄ1, cos ቀ௞గ௫
௣ ቁ , sin ቀ௞గ௫

௣ ቁ : ݇ ∈ ℤାቅ are therefore orthogonal on the interval ሾ−݌,  .ሿ݌

Pg15 
Integral 1 

න ݔ cos(݊ݔߨ) ଵݔ݀ 
ିଵ

= න ݔ cos(݊ݔߨ) ଵݔ݀ 
଴

+ න ݔ cos(݊ݔߨ) ଴ݔ݀ 
ିଵ

 

= න ݔ cos(݊ݔߨ) ଵݔ݀ 
଴

+ න (ݔ−) cos(−݊ݔߨ) ଵݔ݀ 
଴

 

= න ݔ cos(݊ݔߨ) ଵݔ݀ 
଴

− න ݔ cos(݊ݔߨ) ଵݔ݀ 
଴

= 0 

Integral 2 
න ݔ sin(݊ݔߨ) ଵݔ݀ 

ିଵ
= ቈ− ݔ cos(݊ݔߨ)

ߨ݊ − න cos(݊ݔߨ)
ߨ݊ ቉ݔ݀ 

ିଵ

ଵ
 

= ቈ− ݔ cos(݊ݔߨ)
ߨ݊ − sin(݊ݔߨ)

݊ଶߨଶ ቉
ିଵ

ଵ
= 2

ߨ݊ (−1)௡ାଵ, ݊ ∈ ℤା 

Pg 18 
Integral 1 

2 න ଶଵݔ
଴

= 2 ቈݔଷ
3 ቉

଴

ଵ
= 2

3  

2 න ଶݔ cos(݊ݔߨ) ଵݔ݀
଴

= 2 ൭ቈݔଶ sin(݊ݔߨ)
ߨ݊ ቉

଴

ଵ
− 2

ߨ݊ න ݔ sin(݊ݔߨ) ଵݔ݀
଴

൱ 

= − 4
ߨ݊ ൭ቈ−ݔ cos(݊ݔߨ)

ߨ݊ ቉
଴

ଵ
+ 2

ߨ݊ න cos(݊ݔߨ) ଵݔ݀
଴

൱ 

= 4(−1)௡
݊ଶߨଶ , ݊ ∈ ℤା 
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Integral 2 
2 න ଶݔ sin(݊ݔߨ) ଵݔ݀

଴
= 2 ൭ቈ− ଶݔ cos(݊ݔߨ)

ߨ݊ ቉
ିଵ

ଵ
+ 2 න ݔ cos(݊ݔߨ)

ߨ݊ ଵݔ݀
଴

൱ 

= 2(−1)௡ାଵ
ߨ݊ + 4

ߨ݊ ൭ቈݔ sin(݊ݔߨ)
ߨ݊ ቉

ିଵ

ଵ
− න cos(݊ݔߨ)

ߨ݊ ଵݔ݀
଴

൱ 

= 2(−1)௡ାଵ
ߨ݊ + 4((−1)௡ − 1)

݊ଷߨଷ , ݊ ∈ ℤା 

Pg 19 
Integral 1 
Above we found that: 

2 න ଶݔ cos(݊ݔߨ) ଵݔ݀
଴

= 4(−1)௡
݊ଶߨଶ , ݊ ∈ ℤା 

Thus: 
2 න ଶݔ cos(2݊ݔߨ) ଵݔ݀

଴
= (−1)௡

݊ଶߨଶ , ݊ ∈ ℤା 

Integral 2 
Above we found that: 

2 න ଶݔ sin(݊ݔߨ) ଵݔ݀
଴

= 2(−1)௡ାଵ
ߨ݊ + 4((−1)௡ − 1)

݊ଷߨଷ , ݊ ∈ ℤା 
Thus: 

2 න ଶݔ sin(2݊ݔߨ) ଵݔ݀
଴

= (−1)ଶ௡ାଵ
ߨ݊ + 4(1 − 1)

݊ଷߨଷ  

= −1
ߨ݊ , ݊ ∈ ℤା 

Pg 35 
−2 න cos(݊ݔߨ) ଵݔ݀ ݔ

଴
= −2 ൭ቈݔ sin(݊ݔߨ)

ߨ݊ ቉
଴

ଵ
− න sin(݊ݔߨ)

ߨ݊ ଵݔ݀ 
଴

൱ 

= 2 ቈcos(݊ݔߨ)
݊ଶߨଶ ቉

଴

ଵ
= ൝

4
ଶ݊ଶߨ , ݊ is odd

0, ݊ is even  
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