Nuclear Interaction From Effective Field Theory Honours Final Presentation

Damon Binder

Supervisor: Cédric Simenel

Damon Binder Honours Final Presentation

伺 ト イヨ ト イヨ ト

The Nuclear Chart

Masses of Cesium Isotopes

в

- Three ingredients are needed:
 - Nucleon interaction properties
 - A way to solve the resultant many-body problem
 - Experimental data

・ 同 ト ・ ヨ ト ・ ヨ ト

more phenomenological

	Chiral		Non-Relativistic	
Lattice	Perturbation	Relativistic	Energy Density	
QCD	Theory	Mean-Fields	Functionals	
		Structure	Structure and	
1 nucleon	2–16 nucleons	of	dynamics	
		even nuclei	of all nuclei	
1 GeV	700 MeV	100 MeV	10 MeV	

・ 同 ト ・ ヨ ト ・ ヨ ト

- Uses an Energy Density Functional (EDF) to describe nucleon interactions
- Needs lots of parameters
- Hence lots of parametrisations

同下 イヨト イヨト

By studying the origin of nuclear forces in higher energy physics, can we derive constraints on the non-relativistic EDF?

・同・ ・ヨ・ ・ヨ・

- By studying the origin of nuclear forces in higher energy physics, can we derive constraints on the non-relativistic EDF?
- At low energies, describe interactions using effective field theory

SQA

Developing A Toy Model

Model with two particles

- \blacktriangleright The nucleon N
- The sigma σ , a scalar meson

The Lagrangian

$$\mathcal{L} = \overline{N}(i\gamma^{\mu}\partial_{\mu} - M)N + \frac{1}{2}(\partial\sigma)^{2} - \frac{m^{2}}{2}\sigma^{2} - g\sigma\overline{N}N$$

Use path integral to quantise theory

$$Z = \int DN \ D\overline{N} \ D\sigma \ e^{i \int dx^4 \mathcal{L}[\sigma, N, \overline{N}]}$$

▲御▶ ▲理▶ ▲理▶

Э

The Lagrangian

$$\mathcal{L} = \overline{N}(i\gamma^{\mu}\partial_{\mu} - M)N + \frac{1}{2}(\partial\sigma)^{2} - \frac{m^{2}}{2}\sigma^{2} - g\sigma\overline{N}N$$

Use path integral to quantise theory

$$Z = \int DN \ D\overline{N} \ \left(\int D\sigma \ e^{i \int dx^4 \mathcal{L}[\sigma, N, \overline{N}]} \right)$$

▲御▶ ▲理▶ ▲理▶

Э

► The Lagrangian

$$\mathcal{L} = \overline{N}(i\gamma^{\mu}\partial_{\mu} - M)N + \frac{1}{2}(\partial\sigma)^{2} - \frac{m^{2}}{2}\sigma^{2} - g\sigma\overline{N}N$$

Use path integral to quantise theory

$$Z = \int DN \ D\overline{N} \ \left(\int D\sigma \ e^{i \int dx^4 \mathcal{L}[\sigma, N, \overline{N}]} \right)$$
$$= \int DN \ D\overline{N} \ e^{i \int dx^4 \mathcal{L}_{\text{eff}}[N, \overline{N}]}$$

Э

► The Lagrangian

$$\mathcal{L} = \overline{N}(i\gamma^{\mu}\partial_{\mu} - M)N + \frac{1}{2}(\partial\sigma)^{2} - \frac{m^{2}}{2}\sigma^{2} - g\sigma\overline{N}N$$

Use path integral to quantise theory

$$Z = \int DN \ D\overline{N} \ \left(\int D\sigma \ e^{i \int dx^4 \mathcal{L}[\sigma, N, \overline{N}]} \right)$$
$$= \int DN \ D\overline{N} \ e^{i \int dx^4 \mathcal{L}_{\text{eff}}[N, \overline{N}]}$$

• Assume $E_{\text{nuclear}} \ll m$ and expand

・ 同 ト ・ ヨ ト ・ ヨ ト

Э

The Lagrangian

$$\mathcal{L} = \overline{N}(i\gamma^{\mu}\partial_{\mu} - M)N + \frac{1}{2}(\partial\sigma)^{2} - \frac{m^{2}}{2}\sigma^{2} - g\sigma\overline{N}N$$

► The low-energy effective Lagrangian:

$$\mathcal{L}_{\mathsf{eff}} = \overline{N}(i\gamma^{\mu}\partial_{\mu} - M)N + \frac{g^2}{2m^2}(\overline{N}N)^2 + \frac{g^2}{2m^4}(\overline{N}N)\partial^2(\overline{N}N) + O(m^{-6})$$

▲御▶ ▲理▶ ▲理▶

Э

Developing A Toy Model

The low-energy effective Lagrangian:

$$\mathcal{L}_{\rm eff} = \overline{N} (i \gamma^{\mu} \partial_{\mu} - M) N + \frac{g^2}{2m^2} (\overline{N}N)^2 + \frac{g^2}{2m^4} (\overline{N}N) \partial^2 (\overline{N}N) + \dots$$

 From this we can calculate low-energy properties of nuclear systems

$$\mathcal{E}_{\rm INM} = C\rho^{5/3} - \frac{g^2}{2m^2}\rho^2$$

Credit: http://hubblesite.org/newscenter/archive/releases/2002/24/image/a/

Developing A Toy Model

The low-energy effective Lagrangian:

$$\mathcal{L}_{\rm eff} = \overline{N}(i\gamma^{\mu}\partial_{\mu} - M)N + \frac{g^2}{2m^2}(\overline{N}N)^2 + \frac{g^2}{2m^4}(\overline{N}N)\partial^2(\overline{N}N) + \dots$$

 From this we can calculate low-energy properties of nuclear systems

$$\mathcal{E}_{\mathsf{INM}} = C\rho^{5/3} - \frac{g^2}{2m^2}\rho^2$$

 We need extend to more realistic theories

Credit: http://hubblesite.org/newscenter/archive/releases/2002/24/image/a/

Challenge 1: Many Mesons

Meson	Spin ^{Parity}	Isospin	Strangeness	Mass (MeV)
π	0-	1	0	135
K	0-	1/2	1	494
η	0-	0	0	548
η'	0-	0	0	958
ρ	1^{-}	1	0	775
ω	1^{-}	0	0	782
K^*	1^{-}	1/2	1	892
ϕ	1^{-}	0	0	1019
$f_0(500)$	0+	0	0	500
$f_0(980)$	0+	0	0	980
a_0 (980)	0+	1	0	980

・ロト ・日 ・ ・ ヨ ・ ・ 日 ・

E

Challenge 1: Many Mesons

Meson	Spin ^{Parity}	Isospin	Strangeness	Mass (MeV)
π	0-	1	0	135
K	0-	1/2	1	494
η	0-	0	0	548
η'	0-	0	0	958
ρ	1-	1	0	775
ω	1^{-}	0	0	782
K^*	1^{-}	1/2	1	892
ϕ	1-	0	0	1019
$f_0(500)$	0+	0	0	500
$f_0(980)$	0+	0	0	980
a_0 (980)	0+	1	0	980

・ロト ・日 ・ ・ ヨ ・ ・ 日 ・

E

The Chosen Mesons

- The $f_0(500)$ or σ , isoscalar-scalar field σ
- ► The pion, isovector-pseudoscalar field

$$\pi_a = \begin{pmatrix} \pi_+ \\ \pi_0 \\ \pi_- \end{pmatrix}$$

► The omega, isoscalar-vector field

$$\omega^{\mu} = \begin{pmatrix} \omega^{0} \\ \omega^{1} \\ \omega^{2} \\ \omega^{3} \end{pmatrix}$$

• The rho, isovector-vector field ρ^{μ}_{a}

同下 イヨト イヨト

Challenge 2: Meson-Meson Interactions

Need to include self-interaction terms like

• Unless μ and λ are small, difficult to quantitatively study

伺 ト イヨ ト イヨ ト

- Expand at low energies
- The low energy coupling constants cannot be computed from high-energy physics
- But they can be fitted to nuclear data

$$g(\alpha_0, \alpha_1, \alpha_2, ...)(\overline{N}N)^2 \to g(\overline{N}N)^2$$

・ 同 ト ・ ヨ ト ・ ヨ ト

$$\mathcal{L}(N, \overline{N}, \sigma, \omega, \rho, \pi) \to \mathcal{E}(\rho, \tau, J_{ij}, ...)$$

- Our model incorporates
 - Symmetries
 - Energy Scales
 - Meson interaction channels
 - Existence of non-linear interactions
- But our results are insensitive to details of the mesonic physics

伺 ト イヨト イヨト

The Low-Energy Energy Density Functional

$$\begin{split} \mathcal{E} &= \frac{1}{4m^2} \int dx^3 \Big[(-3g^2 + 3\lambda^2 - 3\mu^2) \rho^2 + (g^2 - \lambda^2 + 5\mu^2) \rho_a^2 \\ &+ \frac{1}{2M^2} \Big[(-5g^2 + 5\lambda^2(1 - 2\mu_\omega) + 3\mu^2(1 - 2\mu_\rho)) \Big] \rho \nabla \cdot \vec{J_v} \\ &+ \frac{1}{2M^2} \Big[(-g^2 + \lambda^2(1 - 2\mu_\omega) + 3\mu^2(1 - 2\mu_\rho)) \Big] \rho_a \nabla \cdot \vec{J_v} \\ &+ \frac{1}{16m^2} \left(-56d_1 + 24d_2 - \frac{m^2}{M^2} (6\alpha^2 + (\mu_\omega^2 - 4\mu_\omega + 8)\lambda^2 + 3(\mu_\rho^2 - 4\mu_\rho + 8)\mu^2) \right) \rho \Delta \rho \\ &+ \frac{1}{16m^2} \left(8d_1 - 72d_2 + \frac{m^2}{M^2} (2\alpha^2 - (\mu_\omega^2 - 4\mu_\omega + 8)\lambda^2 + (\mu_\rho^2 - 4\mu_\rho + 8)\mu^2) \right) \rho_a \Delta \rho_a \\ &+ \frac{1}{4M^2} \left((\mu_\omega^2 - 4\mu_\omega - 12)\lambda^2 + 3(\mu_\rho - 2)^2 \mu^2 + 6\alpha^2 - \frac{8M^2}{m^2} (d_1 + 3d_2) \right) \rho \tau \\ &+ \frac{1}{4M^2} \left((\mu_\omega - 2)^2 \lambda^2 - (\mu_\rho^2 - 4\mu_\rho - 20)\mu^2 - 2\alpha^2 - \frac{8M^2}{m^2} (d_1 - d_2) \right) \rho_a \tau_a \\ &+ \frac{1}{4M^2} \left(\frac{8M^2}{m^2} (d_1 + 3d_2) + 6\alpha^2 - \lambda^2 (5\mu_\omega^2 - 20\mu_\omega + 16) - 3\mu^2 (5\mu_\rho^2 - 20\mu_\rho + 16) \right) J_{ija} J_{ija} \\ &+ \frac{1}{8M^2} \left(6\alpha^2 - 3\lambda^2 (\mu_\omega - 2)^2 - 9\mu^2 (\mu_\rho - 2)^2 \right) \left(J_{ija} J_{jia} + J_{sa}^2 \right) \\ &+ \frac{1}{8M^2} \left(-2\alpha^2 - 3\lambda^2 (\mu_\omega - 2)^2 + 3\mu^2 (\mu_\rho - 2)^2 \right) \left(J_{ija} J_{jia} + (J_{sa})^2 \right) \Big]. \end{split}$$

The Low-Energy Energy Density Functional

$$\begin{split} \mathcal{E} &= \frac{1}{4m^2} \int dx^3 \Big[\left(-3g^2 + 3\lambda^2 - 3\mu^2 \right) \rho^2 + (g^2 - \lambda^2 + 5\mu^2) \rho_a^2 \\ &+ \frac{1}{2M^2} \left[\left(-5g^2 + 5\lambda^2 (1 - 2\mu_\omega) + 3\mu^2 (1 - 2\mu_\rho) \right) \right] \rho \nabla \cdot \vec{J_v} \\ &+ \frac{1}{2M^2} \left[\left(-g^2 + \lambda^2 (1 - 2\mu_\omega) + 3\mu^2 (1 - 2\mu_\rho) \right) \right] \rho_a \nabla \cdot \vec{J_v} \\ &+ \frac{1}{16m^2} \left(-56d_1 + 24d_2 - \frac{m^2}{M^2} (6\alpha^2 + (\mu_\omega^2 - 4\mu_\omega + 8)\lambda^2 + 3(\mu_\rho^2 - 4\mu_\rho + 8)\mu^2) \right) \rho \Delta \rho \\ &+ \frac{1}{16m^2} \left(8d_1 - 72d_2 + \frac{m^2}{M^2} (2\alpha^2 - (\mu_\omega^2 - 4\mu_\omega + 8)\lambda^2 + (\mu_\rho^2 - 4\mu_\rho + 8)\mu^2) \right) \rho_a \Delta \rho_a \\ &+ \frac{1}{4M^2} \left((\mu_\omega^2 - 4\mu_\omega - 12)\lambda^2 + 3(\mu_\rho - 2)^2\mu^2 + 6\alpha^2 - \frac{8M^2}{m^2} (d_1 + 3d_2) \right) \rho \tau \\ &+ \frac{1}{4M^2} \left((\mu_\omega - 2)^2\lambda^2 - (\mu_\rho^2 - 4\mu_\rho - 20)\mu^2 - 2\alpha^2 - \frac{8M^2}{m^2} (d_1 - d_2) \right) \rho_a \tau_a \\ &+ \frac{1}{4M^2} \left(\frac{8M^2}{m^2} (d_1 + 3d_2) + 6\alpha^2 - \lambda^2 (5\mu_\omega^2 - 20\mu_\omega + 16) - 3\mu^2 (5\mu_\rho^2 - 20\mu_\rho + 16) \right) J_{ija} J_{ija} \\ &+ \frac{1}{8M^2} \left(6\alpha^2 - 3\lambda^2 (\mu_\omega - 2)^2 - 9\mu^2 (\mu_\rho - 2)^2 \right) \left(J_{ija} J_{jia} + (J_{sa})^2 \right) \Big]. \end{split}$$

▶ We will focus on the central and spin-orbit terms:

$$\mathcal{E} = \int dx^3 \sum_{t=0,1} \left(C_t^{\rho} \rho_t^2 + C_t^{SO} \rho_t \nabla \cdot \vec{J}_{vt} + \dots \right)$$

$$-\frac{1}{3}C_{0}^{\rho} \leq C_{1}^{\rho} \quad (1) \qquad 5C_{1}^{SO} \leq C_{0}^{SO} \quad (2) \qquad C_{0}^{SO} \leq C_{1}^{SO} \quad (3)$$

$$C_{0}^{SO} \leq -\frac{5}{8} \left| \frac{3}{5}C_{0}^{\rho} + C_{1}^{\rho} \right| + \frac{3}{8}(1 - 2\mu_{\rho}) \left(\frac{1}{3}C_{0}^{\rho} + C_{1}^{\rho} \right) \quad (4)$$

$$C_{1}^{SO} \leq -\frac{1}{8} \left| \frac{3}{5}C_{0}^{\rho} + C_{1}^{\rho} \right| + \frac{3}{8}(1 - 2\mu_{\rho}) \left(\frac{1}{3}C_{0}^{\rho} + C_{1}^{\rho} \right) \quad (5)$$

Name	Year	(1)	(2)	(3)	(4)	(5)
UNEDF2	2014	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
UNEDF1	2012	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
UNEDF0	2010	\checkmark	Х	\checkmark	\checkmark	Х
SLy4	1997	Х	\checkmark	\checkmark	\checkmark	\checkmark
SLy6	1997	Х	\checkmark	\checkmark	\checkmark	\checkmark
SLy10	1997	Х	\checkmark	\checkmark	\checkmark	\checkmark

◆ロト ◆部 ト ◆注 ト ◆注 ト

æ

Isospin Dependence of the Spin-Orbit

5900

Isospin Dependence of the Spin-Orbit

Damon Binder

Honours Final Presentation

- Using basic properties of high energy physics, nuclear interactions can be partially constrained
- More sophisticated models have limited utility

▲圖 ▶ ▲ 臣 ▶ → 臣 ▶

3

DQ P

Future Work: Tensor Terms

From Otsuka et al, Phys Rev Lett 95:232502 (2005)

- 4 同 ト 4 目 ト

Future Work: Spin Densities

Figure: Quasifission of ⁴⁸Ca+²⁴⁹Bk

From Umar, et al, Phys Rev C 92:024621 (2015)

Damon Binder

Honours Final Presentation

ヘロト ヘヨト ヘヨト ヘヨト

Э