
Stochastic Simulation of a Two-Level Quantum System

Damon Binder
Open Quantum Systems ASC

Project 1

October 21, 2014

1 Introduction

In this paper we will study and numerically simulate a
damped and driven two-level system. The Hamiltonian
of the system is:

Ĥ = ε(σ̂−e
iωt + σ̂+e

−iωt) + ωσ̂+σ̂−

The constant ε controls the strenght of the driving force
and ω controls the speed at the which the system os-
cillates. We can then couple the system to a reservoir,
resulting in an evolution of the state which is irreversible
and hence cannot be represented by a Hamiltonian. In-
stead, we must describe the evolution in terms of the
master equation:

dρ̂

dt
= −i[Ĥ, ρ̂] + γD[σ̂−]ρ̂

where γ controls the strength of the damping of the sys-
tem caused by interaction with the reservoir. An exam-
ple of a physical system that could be modelled with this
equation is a two-level atom which is being driven by a
laser, and where the damping represents the spontaneous
emission of photons by the atom.

In this paper we shall use quantum trajectories to
stochastically simulate the two-level system. We shall
unravel the master equation in terms of the operator σ̂−,
which gives us the SDE:

|dψ〉 =

(
− i
~
Ĥ +

γ2

2
(〈σ̂+σ̂−〉 − σ̂+σ̂−)

)
dt|ψ〉

+

(
σ̂−√
〈σ̂+σ̂−〉

− 1̂

)
dN |ψ〉

where dN is a Poissonian process with E(dN) =
γ2〈σ̂+σ̂−〉 and where |ψ〉 denotes the state of the sys-
tem. This equation can be physically interpretted as the
evolution of the system conditioned on measuring exci-
tations in the reservoir The jump process represents a
positive measurement, as when this occurs the system
must have emitted a photon and hence is in the ground
state.

2 Stochastic Simulation of the
System

In vector notation, we can write the state of the system
as:

|ψ〉 = a|e〉+ b|g〉 =

(
a
b

)
where a is the component of the system in the excited
state and b is the component in the ground state. In this
respresentation, the raising and lowering operators are:

σ̂+ =

(
0 1
0 0

)
σ̂− =

(
0 0
1 0

)
and hence, the average excitation of the system is given
by 〈σ̂+σ̂−〉 = |a|2. After a bit of algebraic manipulation
we find that:(
da
db

)
=

[
−
(
iω − γ2

2 |a|
2 iεe−iωt

iεeiωt 0

)
+
γ2|a|2

2
I
]
dt

(
a
b

)

+dN

((
0
1

)
−
(
a
b

))
(as the phase of a quantum state is nonphysical, when the
system collapses to ground state we can assume it is the

state

(
0
1

)
). However, directly numerically integrating

this equation is not numerically stable, as if numerically

errors result in an |a|2 > 1, then the γ2|a|2
2 I term results

in superexponential growth. This problem can be reme-

died by noticing that all the γ2|a|2
2 I term does is scale the

vector, and as the norm of the state is always 1 anyway,
we can integrate:(
da
db

)
=

(
−iω − γ2

2 |a|
2 −iεe−iωt

−iεeiωt 0

)(
a
b

)
dt−dN

(
a

b− 1

)
and then calculate average excitation by dividing |a|2
through by

√
|a|2 + |b|2. This is particularly useful, as

we can simulate a jump process by randomly choosing a
number between 0 and 1, and then triggering the jump

1

when the norm becomes smaller than this. As the change
in norm is −γ2|a|2.

There are many different numerical process that can
be used to integrate the differential equation. Originally,
Euler’s method was used to integrate the equations, how-
ever, this did not converge very well. Instead, a fourth or-
der Runge-Kutta (RK4) method was used. XMDS code
for this is included as an appendix. While when integrat-
ing deterministic equations the RK4 method converges as
the fourth power of step size, over the steps where the
jump process occured the convergence was only correct
to first order. This was a result of the fact that regard-
less of when the jump occurred, the syhstem was always
calculated to be in the unexcited state at the end of the
step. Because of, the convergence properties of the RK3
method when used for our stochastic simulation were
worse then fourth order. Although this problem was not
remedied in our simulations, it could be solved by taking
smaller step sizes just before each jump occurs.

The average excitation over time of the system cal-
culated using the RK4 method is graphed in Figure 1.
The calculations were performed for ω = ε = γ = 1 and
t ∈ [0, 10] with the system beginning in the excited state
at t = 0. The step size was 0.005 and 1000000 paths were
used.

There are two errrors associated with the numerical
calculations. The first is due to the stochastic nature
of the simulation, which is due to the limited sample
size of paths taken, and the second is due to using
Runge-Kutta method to calculate numerically integrate
the SDE. XMDS can calculate the random error using
the variation in the range of average excitations, and can
estimate the Runge-Kutta method error by repeating cal-
culations with half the step size and then comparing the
results. Both these errors are too small to be seen on
Figure 1, however, they are plotted in Figure 2. As can
be seen on the diagram, the two errors are of roughly the
same size and they are mostly smaller than 0.001.

Usually, stochastc methods are used because it is too
difficult to directly integrate the master equation. How-
ever, for our two-level system, the density matrix is of
the form:

ρ̂ =

(
p q
q∗ 1− p

)
where p is real and q is complex. Using the master equa-
tion, we find that the evolution of the values is given
by:

dp

dt
= −2εIm(qeiωt)− γp

dq

dt
= −iωq − iω(1− 2p)εe−iωt − γq

2

We can now XMDS to numerically integrate these equa-
tion using the 9th order Runge-Kutta method with step

size h = 0.002. The numerical error can be computed
by repeating the calculation with half the step size, and
this results in error estimates of the order of 10−16, er-
rors which likely originate because of finite machine pre-
cision. Hence we can take these computed values as very
close to the actual average excitation. For this reason we
can take the absolute difference between the stochastic
method and this method as a good estimate of the actual
error in the stochastic method.

In Figure 3, the absolute value of the difference be-
tween the two methods is plotted, along with the esti-
mated error computed for the stochastic method. The
total error was estimated by simply adding the absolute
values of the stochastic and numeric errors. In we can
see that our estimate of the error is a very good approx-
imator of the actual error size.

3 Calculating the Equilibrium
Average Excitation

In this section we will consider a slight generalisation of
the two-level system. When we detect an excitation in
the reservoir, we can apply feedback to the system by
unitarily transforming the system. We shall calculate
the effect of such feedback on the average excitation in
the limit as t→∞.

The most general SDE describing the evolution of the
state with feedback is given by:

|dψ〉 =

(
− i
~
Ĥ +

γ

2
(〈σ̂+σ̂−〉 − σ̂+σ̂−)

)
dt|ψ〉

+

(
Û σ̂−√
〈σ̂+σ̂−〉

− 1̂

)
dN |ψ〉

where Û is the unitary operation applied after each de-
tection of an excitation. We can reduce this SDE reduces
to the master equation:

dρ̂

dt
= − i

~
[Ĥ, ρ̂] + γD[Û σ̂−]ρ̂

The general form of the density matrix is:

ρ =

(
p q
q∗ 1− p

)
where p is real, and the most general form of Û σ̂− is:

Û σ̂− =

(
α 0
β 0

)
where α and β are complex numbers satisfying |α|2 +
|β|2 = 1. We can then expand out the master equation
to find differential equations for p and q:

dp

dt
= −iε(q∗e−iωt − qeiωt)− γ|β|2p

2

dq

dt
= −iωq − iω(1− 2p)εe−iωt + γ

(
αβ∗p− q

2

)
Let αβ∗ = A and |β|2 = B; the differential equations
then become:

dp

dt
= −iε(q∗e−iωt − qeiωt)− γBp

dq

dt
= −iωq − iω(1− 2p)εe−iωt + γ

(
Ap− q

2

)
By calculating Tr(ρ̂σ̂+σ̂−), we find that the average ex-
citation is given by p. Therefore, in order to find the av-
erage excitation of the system in the limit as t→∞, we
must have ṗ = 0. Assume that in this limit, q = Ωe−iωt

for some constant Ω, and also rewrite A as A = Ce−iωt.
We now have the equations:

0 = −iε(Ω∗ − Ω)− γBp

−iωΩe−iωt = −iωΩe−iωt − iω(1− 2p)εe−iωt

+γ

(
Ce−iωtp− Ω

2
e−iωt

)
Rearranging the first equations gives:

p = −2εIm(Ω)

γB

We can then manipulate the second equation:

i2ωε(1− 2p)

γ
= 2Cp− Ω

and by taking the imaginary components of both sides,
we find that:

Im(Ω) =
2pIm(C)− 2ωε(1− 2p)

γ

Combining the two equations now gives:

p =
4ε2ω(1− 2p)− 4pεIm(C)

γ2B

and rearranging this equation to isolate p gives:

p =
4ε2ω

8ε2ω + 4εIm(C) + γ2B

=
1

2 + Im(C)
εω + γ2B

4ε2ω

We have thus found the average excitation of the system
when it is in the steady state.

From this equation we can deduce a few interesting
properties of the system. In the case where no unitary
transformation is applied, we have:

Û σ̂− =

(
0 0
1 0

)

which gives us B = 1, C = 0. In this case the equilibrium
excitation is:

p =
1

2 + γ2

4ε2ω

<
1

2

Instead, if we always transformed the system into the
excited state after a measurement, we would have:

Û σ̂− =

(
0 1
1 0

)(
0 0
1 0

)
=

(
1 0
0 0

)
and in this case B = C = 0. We then have:

p =
1

2

which is greater then if we applied no feedback. Curi-
ously, in this case the average excitation is independent
of the constants of the system.

4 Optimising the Average Excita-
tion

We saw at the end of the last section that by transforming
the system into the excited state after measurements, we
can increase the average excitation to 1

2 . This is not the
optimal excitation that we can achieve, and the aim of
this section is to find the optimal excitation. We shall
assume that Im(C) and B are constant, although this is
without loss of generality in the case of a constant p.

First examine the restrictions placed on B and Im(C).
As:

αβ∗ = Ce−iωt |β|2 = B

we can note that B > 0. We also have the restriction
that |α|2 + |β|2 = 1, which when combined with the
above expressions allows us to deduce that:

|C|2 +B2 = B

and hence:
Im(C)2 ≤ B −B2

To optimise p, we wish for Im(C) to be as large and
negative as possible, and according the above inequality,
this means that:

Im(C) = −
√
B −B2

We now have a formula for p in terms of B:

p(B) =
1

2−
√
B−B2

εω + γ2B
4ε2ω

which we can solve by setting dp
dB = 0. In practise it is

easier to minimise p−1, and then calculate:

d

dB

[
2−
√
B −B2

εω
+
γ2B

4ε2ω

]
= 0

3

and hence:
γ2

2ε
=

1− 2B√
B −B2

This equation can be rearranged into a quadratic, and
then solve to find:

B =
1

2
− 1

2

γ2√
γ4 + 16ε2

and:

Im(C) =
−2ε√

γ4 + 16ε2

Once the optimal values of B and C have been cal-
culated, we can find a unitary operator giving use these
values:

Û =

(
i
√
B e−iωt Im(C)√

B

−eiωt Im(C)√
B

−i
√
B

)
To find the optimal unitary operator in the case of ω =
γ = ε = 1, we can calculate:

B =
1

2
− 1

2
√

17
, Im(C) =

−2√
17

To achieve optimal excitation, we can therefore apply the
unitary operator:

Û =

(
0.6154i −0.7323e−iωt

0.7323eiωt −0.6154i

)
The evolution of this system is shown in Figure 4. The
system was stochastically simulated with method used
in Section 2, and the errors associated with this method
are too small to be seen on the graph.

5 Optimising Excitation with Ar-
bitary Unitary Operators

In this section we shall show that if we can apply an
unitary operator arbitrarily and also know the system
statey at all times, then the average excitation can be
kept arbitarily close to 1.

Let us assume that |ψ(0)〉 is the excited state. In the
situation where the Poissonian process does not trigger
on the interval t ∈ [0, ε] for some ε > 0, then we know
that the system must be in the state |ψ(ε)〉. This allows
us to construct a family of unitary operators Ûε with the
property that:

Ûε|ψ(ε)〉 = |ψ(0)〉

In order to keep the system arbitrarily close to the ex-
cited state, we could, every time we detect an excitation
in the reserviour, apply a unitary operator to shift the
state back to the excited state, and then apply Ûε at in-
tervals of ε. By making ε sufficiently small, we can force

the system to be arbitrarily close to the excited state.
For this method to work we only need to know the exact
state of the system at a single point in time, along with
the results of all the mesurements of excitations of the
reservoir.

6 Conclusion

We investigated the behaviour of a damped and driven
two-level system. Through the use of a stochastic unrav-
elling we were able to simulate the system through the
use of a jump process and were able to use this to calcu-
late the average excitation of the system. By comparing
this to a direct integration of the master equation, we
were able to verify that the method worked and that the
estimated errors were of a similar size to the actual error
in the method.

The equilibrium average excitation for the system was
then investigated, and a formula was derived that could
be used to calculated this quantity. Applying feedback
after a jump process could then be used to modify the
equilibrium excitation, and we showed how to optimise
the equilibrium excitation through feedback. Finally it
was shown that if a unitary operator could be applied
arbitarily, then the system could be kep tarbitarily close
to the excited state.

4

Figure 1: Average Excitation over Time

Figure 2: Error in Average Excitation over Time

5

Figure 3: Difference Between Stochastic Method and Integration of Master Equation

Figure 4: Average Excitation over time for System with Optimal Feedback

6

7 Appendix: XMDS Code

The code below uses the stochastic method to calculate the average excitation of the two-level system.

<?xml version="1.0" encoding="UTF-8"?>

<simulation xmds-version="2">

<name>Stochastic Method</name>

<author>Damon Binder</author>

<driver name="multi-path" paths="1000000" />

<features>

<error_check />

<validation kind="run-time" />

<benchmark />

<globals>

<![CDATA[

real epsilon = 1;

real omega = 1;

real kappa = 1;

real jumpNorm = 0;

]]>

</globals>

</features>

<geometry>

<propagation_dimension> t </propagation_dimension>

</geometry>

<vector name="state" type="complex">

<components>

a b

</components>

<initialisation>

<![CDATA[

a = 1.0;

b = 0.0;

]]>

</initialisation>

</vector>

<noise_vector name="uniformNoise" kind="uniform" type="real" method="dsfmt" seed="314 159 276">

<components>jumpnext</components>

</noise_vector>

<computed_vector name="normVec" dimensions="" type="real">

<components> norm2 </components>

<evaluation>

<dependencies>state</dependencies>

<![CDATA[

norm2 = mod2(a)+mod2(b);

]]>

</evaluation>

7

</computed_vector>

<sequence>

<filter>

<dependencies> uniformNoise</dependencies>

<![CDATA[

jumpNorm = jumpnext;

]]>

</filter>

<integrate algorithm="RK4" interval="10.0" steps="2000" tolerance="1e-4">

<samples>100</samples>

<operators>

<integration_vectors>state</integration_vectors>

<![CDATA[

da_dt = -kappa^2*0.5*a-i*a*omega-i*epsilon*b*exp(-i*omega*t);

db_dt = -i*epsilon*a/exp(-i*omega*t);

]]>

</operators>

<filters>

<filter>

<dependencies>normVec</dependencies>

<![CDATA[

if (norm2<jumpNorm) { jumpy(); };

]]>

</filter>

</filters>

</integrate>

<filter name="jumpy">

<dependencies>state uniformNoise</dependencies>

<![CDATA[

a = 0;

b = 1;

jumpNorm = jumpnext;

]]>

</filter>

</sequence>

<output format="ascii" filename="Stoch2.xsil">

<sampling_group initial_sample="yes">

<moments>aR</moments>

<dependencies>state normVec</dependencies>

<![CDATA[

aR = mod2(a)/norm2;

]]>

</sampling_group>

</output>

</simulation>

8

This code uses the 9th order Runge-Kutta method to directly integrate the master equation.

<?xml version="1.0" encoding="UTF-8"?>

<simulation xmds-version="2">

<name>Master Equation</name>

<author> Damon Binder</author>

<features>

<globals>

<![CDATA[

real omega = 1;

real epsilon =1;

real kappa = 1;

]]>

</globals>

<error_check />

</features>

<geometry>

<propagation_dimension> t </propagation_dimension>

</geometry>

<vector name="state" type="complex">

<components>

p q

</components>

<initialisation>

<![CDATA[

p=1;

q=0;

]]>

</initialisation>

</vector>

<sequence>

<integrate algorithm="ARK89" interval="10" tolerance="1e-7" steps="500">

<samples>100</samples>

<operators>

<integration_vectors>state</integration_vectors>

<![CDATA[

dp_dt = -2*epsilon*Im(q*exp(i*omega*t))-kappa*p;

dq_dt = -i*omega*q-i*omega*(1-2*p)*epsilon*exp(- i*omega*t)-kappa*q/2;

]]>

</operators>

</integrate>

</sequence>

<output format="ascii" filename="Master Equation.xsil">

<sampling_group initial_sample="yes">

<moments>pR</moments>

<dependencies>state</dependencies>

<![CDATA[

pR = p.Re();

9

]]>

</sampling_group>

</output>

</simulation>

10

