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Abstract

In this paper, the application of supersymmetry to the
solving of quantum mechanical Hamiltonians is explored.
A method for factorising Hamiltonians is developed and
it is shown that factorisation allows one to construct a
second Hamiltonian with an almost identical eigenspec-
tra. This is then applied to solving Shape Invariant Po-
tentials (SIPs), and the close relationship between SIPs
and analytically solvable potentials is discussed.

1 Introduction

One of the major goals of modern physics has been to
unify the various symmetries found in nature. Initially
symmetries which were generated by a Lie algebra were
considered; these are sets of symmetries which are closed
only under commutation. However, a no-go theorem
discovered by Coleman and Mandula in 1967[1] proved
that it would not be possible to achieve this unification
through Lie algebras. In order to circumvent the theo-
rem, superalgebras were developed, which, unlike Lie al-
gebras, are closed under both commutation and anticom-
mutation. The type of symmetries generated by these
superalgebras was known as supersymmetries (SUSY).

In order to study supersymmetric quantum field the-
ories, supersymmetric quatum mechanics (SUSY QM)
was developed. This was initial used as a toy model in
order to test mathematical methods that could be ap-
plied to the more complicated field theories. In Section 2
we begin by introducing one such model, originally stud-
ied by Witten in [2]. It was soon discovered that these
models were of interest in their own right, as they could
be used to create Hamiltonians pairs with closely related
eigenspectras.

There is a close relationship between SUSY QM and
Hamiltonian factorisation, which we shall explore in Sec-
tion 3. The latter method was explored by Infeld and
Hull [3] in the 1950s; however, the inimate connection
between factorisation and supersymmetry would only be
discovered thirty years later. The results derived in Sec-
tion 3 are applied to scattering states in Section 4.

In Section 5, repeated factorisation is used to create
a hierachy of Hamiltonians from a given initial Hamil-
tonian, and this leads to the concept of shape invariant
potentials (SIP) in Section 6, a concept first introduced
by Gendenshtein in 1983 [4]. For this class of potentials,
the energy eigenvalues can easily be calculated using al-
gebraic methods. Curiously, all standard solvable poten-
tials, such as the harmonic oscillator, the free particle,
and the infinite square well, are shape invariant poten-
tials, demonstrating an intimate connection between an-
alytically solvable problems in QM, supersymmetry, and
the factorisation method.

2 Supersymmetric QM

Historically, SUSY QM arose out of the attempts of
physicists to create toy models of SUSY which they could
use as a testing ground for the theory. We shall take a
spin 1/2 model where:

H =

(
H1 0
0 H2

)
is the Hamiltonian, and where:

Q =

(
0 A
0 0

)
is known as the supercharge operator. These shall satisfy
the anti-commutator relations:

{Q,Q} = 0, {Q,QT } = H (1)

This algebra was first introduced by Nicolai[5]. The first
anticommutator relationship is equivalent to stating that
Q is nilpotent. By expanding the second anticommutator
relation, we find:

H = QQT +QTQ =

(
ATA 0

0 AAT

)
While SUSY QM originated in order to understand the
properties of H, it was soon found that H1 and H2 were

1



closely related, and that this could be used to solve one-
dimensional problems in QM. To see this, let:

H1|ψ1
n〉 = E1

n|ψ1
n〉

be the eigenvectors of H1. For n > 0:

H2A|ψ1
n〉 = AATA|ψ1

n〉 = AH1|ψ1
n〉 = E1

nA|ψ1
n〉 (2)

Likewise, if H2|ψ2
n〉 = E2

n|ψ2
n〉, then:

H1A
T |ψ2

n〉 = ATH2|ψ2
n〉 = E2

nA
T |ψ2

n〉 (3)

These relationships tell us that, except for states of zero
energy, the two Hamiltonians have an identical energy
spectra, and closely related eigenvectors. These degen-
eracies are in fact a result of the supersymmetry of H:

[H,Q] = HQ−QH

= QQTQ+QTQ2 −Q2QT −QQTQ = 0

In other words, as H and Q commute, Q can be seen
as a symmetry of H, and this symmetry results in the
degenarate eigenvalues of H.

3 Factorisation of a Hamiltonian

In the previous section we found that if we have Hamil-
tonians of the form ATA and AAT , then they have an
(almost) identical spectra and closely related eigenvec-
tors as a result of supersymmetry. In order to apply
our results to quantum mechanical problems, we need a
method of factorising Hamiltonians into the form ATA.
Our treatment of factorisation loosely follows the treat-
ment in [6].

Let us begin with the Hamiltonian of a single particle:

H1 = − ~2

2m

d2

dx2
+ V1(x)

which has a ground state of zero energy. This require-
ment does not restrict us, as we can always add a con-
stant to the Hamiltonian in order to achieve this.

We wish to factorise the Hamiltonian as H1 = ATA.
In order to do so we can use the ansatz:

A =
~√
2m

d

dx
+W (x), AT = − ~√

2m

d

dx
+W (x)

where W (x) is known as the superpotential [6]. Then:

H1 =

(
− ~√

2m

d

dx
+W (x)

)(
~√
2m

d

dx
+W (x)

)

=
~2

2m

d2

dx2
+W (x)2 − ~√

2m
W ′(x)

Let ψ0 be the ground state of H1. Then:

〈ψ0|H1|ψ0〉 = 〈Aψ0|Aψ0〉 = 0

This implies that A|ψ0〉 = 0, and thus:

~√
2m

dψ0

dx
+W (x)ψ0(x) = 0

We can then rearrange this to find the superpotential:

W (x) = − ~√
2m

ψ′0(x)

ψ0(x)
= − ~√

2m

d lnψ0

dx
(4)

We can now calculate the SUSY partner Hamiltonian:

H2 = AAT = − ~2

2m

d2

dx2
+W (x)2 − ~√

2m
W ′(x)

The potentials:

V1,2(x) = W (x)2 ± ~√
2m

W ′(x) (5)

are known as SUSY partner potentials. From (2) and
(3) we know that the nonzero spectra of H1 and H2 are
identical. We can, however, derive an even stronger rela-
tionship between H1 and H2 by proving that H2 has no
zero eigenvalues.

Assume that this is false, and that H2ψ
2
0(x) = 0.

Then:

0 = − ~2

2m

d2

dx2
ψ2
0(x) +

(
W (x)2 − ~2

2m
W ′(x)

)
ψ2
0

which, by rearranging and applying (4), simplifies to:

− ~√
2m

d

dx
lnψ1

0(x) =
~√
2m

d

dx
lnψ2

0(x)

Therefore:
ψ2
0(x) = C(ψ1

0(x))−1

which is not normalisable. Thus, H2 has no zero eigen-
values.

As E1
0 = 0 and E2

0 6= 0, we can use (2) and (3) to
deduce that:

E1
0 = 0, E2

n = E1
n+1 (6)

|ψ2
n−1〉 = (E1

n)−1/2A|ψ1
n〉 (7)

|ψ1
n+1〉 = (E2

n)−1/2AT |ψ2
n〉 (8)

where the normalisation constants in (7) and (8) can be
found using:

〈Aψ1
n|Aψ1

n〉 = 〈ψ1
n|ATA|ψ1

n〉 = 〈ψ1
n|H1|ψ1

n〉 = E1
n

〈Aψ2
n|Aψ2

n〉 = 〈ψ2
n|AAT |ψ2

n〉 = 〈ψ2
n|H2|ψ2

n〉 = E2
n
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As an example, we will find the partner potential of
the infinite square well. Modifying the potential in the
centre so that the ground energy is 0, we find that:

E1
n =

(n+ 1)2π2~2

2mL2
− π2~2

2mL2
=
n(n+ 2)π2~2

2mL2

ψ1
n(x) =

(
2

L

)1/2

sin

(
(n+ 1)πx

L

)
The superpotential of the infinite square well is [6]:

W (x) = − ~π
L
√

2m

cos(πx/L)

sin(πx/L)
= − ~π

L
√

2m
cot
(πx
L

)
and the partner potential is:

V2(x) =
~2π2

2mL2

(
csc2

(πx
L

)
− 1
)

For both W (x) and V2(x), the functions are defined on
the interval [−L,L], and are infinite otherwise.

By shifting V2(x) by ~2π2

2mL2 , we can deduce the eigen-
values of:

H = − ~2

2m

d2

dx2
+

~2π2

2mL2
csc2

(πx
L

)
are the same as those of the infinite square well excluding
the ground state, and that the eigenvectors can be found
by multiplying the eigenvectors of the infinite square well
by A. Thus, for H, the first two eigenvalues and eigen-
states are:

E0 =
4~2π2

2mL2
, ψ0(x) = −2

√
2

3L
sin2

(πx
L

)
E1 =

9~2π2

2mL2
, ψ1(x) = − 2√

L
sin
(πx
L

)
sin
(πx
L

)
4 SUSY QM and Scattering

States

We shall now consider the applications of supersymmet-
ric quantum mechanics to Hamiltonians with scattering
states. In order for scattering to occur for partner poten-
tials V1 and V2, it is necessary that these potentials have
a finite limit as x→ ±∞. Let W be the SUSY potential.
It follows from (5) that if limx→±∞W (x) = W±, then:

lim
x→±∞

V1,2 = W 2
±

Let ψ1,2
E (x) be a scattering eigenstate of energy E of

V1,2. For V1,2 there is a transmission coefficient T1,2(E)
and a reflection coefficient R1,2(E) such that:

lim
x→∞

ψ1,2
E (x) = T1,2e

ik+x

lim
x→−∞

ψ1,2
E (x) = eikx +R1,2e

−ik−x

where:
k± = (E ±W 2

−)1/2

We can now use relationships (2) and (3) to derive:

lim
x→±∞

ψ2
E(x) = lim

x→±∞
NAψ1

E(x)

where N is an arbitary normalisation constant. Thus:

T1e
ik+x = NT2(−ik+ +W+)Eik+x

eik−x+R1e
−ik−x = N [(−ik−+W−)eik−x+(ik−+W−)e−k−xR2]

Equating the coefficients of the exponential terms:

R1(E) =
W− + ik−
W− − ik−

R2(E)

T1(E) =
W+ − ik+
W− − ik−

T2(E) (9)

From these relationships we can deduce |R1|2 = |R2|2
and |T1|2 = |T2|2 ; in other words, the reflection and
transmission probabilities of parnter potentials are iden-
tical. In the special case of W+ = W−, we have T1(E) =
T2(E), and thus in this special case the phase shift of
transmission are also equal.

From the previous discussion, we can conclude that a
potential is reflectionless, then so is its partner poten-
tial. As an example, let us consider the superpotential
W (x) = −A tanh(αx). The partner potentials for this
superporential are:

V1,2 = A2 +A

(
A± α ~

2m

)
sech2(αx)

When A = α ~
2m , V2 corresponds to a free particle and is

therefore reflectionless. Thus:

V1(x) = α2 ~2

2m
(1 + 2 sech2(αx))

is also reflectionless.

5 The Hierachy of Hamiltonians

In Section 3 we developed a method for factorising a
Hamiltonian H1 and then using this to create a SUSY
partner H2. There is nothing to stop us repeating this
process, allowing us to generate a hierachy of Hamiltoni-
ans Hn, all of which can be solved if H1 can be.

Let Hk have a ground state ψk0 (x) with energy Ek0 .
From the last section, we know that we can factorise:

Hk = ATkAk + Ek0 = − ~2

2m

d2

dx2
+ Vk(x)
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where:

Ak =
~√
2m

d

dx
+Wk(x), Wk(x) = − ~√

2m

d

dx
lnψk0

We shall define Hk+1 = AkA
T
k + Ek0 , with the SUSY

partner potential given by:

Vk+1(x) = Wk(x)2 − ~√
2m

W ′k(x) + Ek0

= Vk(x)− ~2

m

d2

dx2
lnψk0 (10)

This simplifies down to (5) when Ek0 = 0. All we have
done is shifted the eigenspectra of both Hk and Hk+1 by
Ek+1

0 , and thus can generalise (6) and (7) to:

Ek+1
n = Ekn+1, |ψk+1

n−1〉 = (Ekn − Ek0 )−1/2Ak|ψkn〉 (11)

Beginning with k = 1 and recursively applying (10) and
(11), we find that, in terms of the eigenstates of the H1:

Ekn = E1
n+k−1 (12)

ψkn =

m−1∏
i=1

Ai√
E1
n+m−1 − E1

i−1

ψ1
n+m−1 (13)

Vk(x) = V1(x)− ~
m

d

dx
ln(ψ1

0ψ
1
1 ...ψ

1
k) (14)

From these relationships, it can be seen that if the eigen-
states and eigenvalues of H1 are known, then we can
easily calculate the these for all other Hamiltonians in
hierachy. Conversely, if we know all the potentials in the
hierachy, then we can solve H1 using (14).

6 Shape Invariant Potentials

Let W (x, a1) be a superpotential which depends on a
set of parameters a1. We say that this superpotential is
shape invariant if:

W (x, ai)
2 − ~√

2m
W ′(x, ai)

= W (x, ai+1)2 +
~√
2m

W ′(x, ai+1) +R(ai) (15)

where R(ai) is a constant independent of x and where
ai+1 = f(ai) for some function f [8]. Let:

V1,2(x, a1) = W (x, a1)2 ± ~√
2m

Such a potential is known as a Shape Invariant Potential
(SIP). From (4), we can deduce that:

E1
0 = 0, ψ1

0(x, a1) = N exp

(
−
∫
W1(y, a1) dy

)
(16)

where we shall assume that W (x, a1) is such that
ψ1
0(x, a1) is normalisable for all choices of a1, and N is a

normalisation constant.1

We can use (15) to deduce that:

V2(x, a1) = W (x, a1)2 − ~√
2m

W ′(x, a1)

= W (x, a2)2 +
~√
2m

W ′(x, a2) +R(a1)

Continuing in this manner, we can construct a hierachy
of Hamiltonians with potentials:

Vk = W (x, ak)2 +
~√
2m

W ′(x, ak) +

k∑
j=0

R(aj)

As the ground state of V1 is zero, we can conclude that:

Ek0 =

k−1∑
j=1

R(aj) (17)

and using (12), can deduce the eigenspectra of H1:

E1
n =

k−1∑
j=1

R(aj) (18)

Similarly, as we know the ground state of V1(x, a1), we
can deduce the eigenfunction of V1. This can be seen by
starting with Hk which has ground state ψ1

0(x, ak), and
then using (13):

A(x, aj) =
~√
2m

d

dx
+W (x, aj)

ψ1
n(x, a1) = N

n−1∏
j=0

AT (x, aj)

ψ1
0(x, ak) (19)

From the previous discussion, we can conclude that
if we have a shape invariant superpotential W (x, a) and
can construct a ground function using (16), then we can
solve any potential of the form:

V (x) = W (x, a)2 +
~√
2m

W ′(x, a) (20)

For instance, the harmonic oscillator can be solved by
noting that the superpotential W (x, ω) = 1

2ωx is shape
invariant:

W (x, ω)2 − ~√
2m

W ′(x, ω)

1This restriction on W (x) means that W (x) is a ”good” SUSY,
rather than a ”broken” SUSY, a distinction with important appli-
cations in theoretical physics. See for instance [9]
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= W (x, ω + ~) +
~√
2m

W ′(x, ω + ~) + ~ω

and also that:

V1(x, ω) = W (x, ω)2 +
~√
2m

W ′(x, ω) = ωx2 − 1

2
ω

The harmonic oscillator can then be solved using (18)
and (19). Doing so reproduces the ladder operator
method for solving the harmonic oscillator, an explana-
tion of which can be found in [7].

It is remarkable that all well known analytically
solvable potentials in nonrelativistic quantum mechanics
can be solved using shape invariance. Indeed, these
potentials all fall into a subset of solutions where ai
and ai+1 are related by a translation, ai+1 = ai + α,
for some constant α. There are exactly ten types
of superpotentials with this property that are also
independent of ~; they are shown in Table 1. A proof
that these are the only ten possible is given in [8].

Name Superpotential
Harmonic Oscillator Ax
Coulomb A− B

x

3D Oscillator Ax− B
x

Morse A−Be−x
Rosen-Morse I A cot(x) + B

A

Eckart A coth(x) + B
A

Rosen-Morse II A tanh(x) + B
A

Scarf I A tan(x)−B sec(x)
Scarf II A tanh(x) +Bsech(x)
Pöschl-Teller A coth(x)−Bcsch(x)

Table 1: Solvable Potentials

In Table 1, the coulomb potential can be used to solve
the hydrogen atom, and the 3D oscillator can be used to
solve the radial equation of the three-dimensional har-
monic oscillator. The infinite square well is a special case
of the Rosen-Morse I potential, and the free particle is a
special case of the Rosen-Morse II potential. Using Table
1 alone, we can thus solve almost any potential found in
an introductory textbook on quantum mechanics.

7 Conclusion

Supersymmetry has proved to be a useful concept in
various branches of physics. In this paper, we exam-
ined the application of supersymmetry to the eigenspec-
tra of Hamiltonians in non-relativistic quantum mechan-
ics. This has allowed us to, for a given Hamiltonian,
produce another Hamiltonian with an almost identical
eigenspectra and closely related eigenvectors. For scat-
tering states, the transmission and reflection coefficients
of these Hamiltonians are also identical.

The concept of a shape invariant potential allows us
to define a class of Hamiltonians which we can solve di-
rectly using supersymmetry. This concept is of particular
interest as all commonly solved potentials in quantum
mechanics belong in this category, suggesting that the
solvability of potentials is closely related to supersym-
metry. The nature of this relationship is still not fully
understood, and supersymmetric quantum mechanics is
still an active area of research. For instance, a general
classification of all shape independent potentials has not
yet been achieved.

In this paper we have only scratched the surface of
possible applications of supersymmetry to quantum me-
chanics. Supersymmetry has been used to solve the Pauli
and Dirac equations [9]. It also provides a method to
produce families of isospectral Hamiltonians, which can
then be applied to solving the Korteweg-de Vries equa-
tion. The WKB approximation method can be extended
using supersymmetry to the SWKB method, which for
many potentials produces a more accurate approxima-
tion and for the potentials in Table 10 produces exact
results. Other approximation techniques have also been
developed using supersymmetry, including the use of the
variational principle along with supersymmetry to de-
termine the eigenspectra of potentials. Details on the
application of SUSY QM to these topics can be found in
[6].

Supersymmetry has succesfully been applied to many
other branches of physics other than quantum mechan-
ics, including statistical and condensed matter physics,
atomic physics, nuclear physics, particle physics, high en-
ergy physics and mathematical physics. A partial list of
topics that supersymmetry has been applied to can be
found in [9]. So while supersymmetry has so far failed
to provide a unified theory of fundamental forces, it has
proven itself to be a concept of immense utility in prob-
lems throughout physics.
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