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Initially we represent a quantum state as a wavefunction
P (x,1)
Easy to find probability distribution of x:
2
P(X =x) =y (x,1)
Hard to find the distribution of p:

P =p)=——|[W(x0e"dp

Can’t we just use a probability distribution P(x,p) like
we did in classical mechanics?



Classical Ensembles

Classically, P(x,p) can represent a classical ensemble.
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Classical Ensembles

Classically, P(x,p) can represent a classical ensemble.

We calculate expectation values:
(A(x,p))= | A(x, p)P(x, p)dpdx

The distribution evolves according to:

di:—{P,H}:aP dq +8P dp
dt g dt Op dt

What do we get if we formulate Quantum Mechanics
in the same way?
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We set h=1 in the equation.

For a mixed state:

] R .
W(x,p)= ;I(Hy p|x—y)e " dy
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Properties of the Wigner Function

|. Symmetric in x and p:

1
W(x,p)=—|({p+q
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2.We can marginalise:

jW(x,p)dp = <x x> jW(x, p)dx = <p

3. Trace can be calculated:

J W x. pydpdx =Tr(p)
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Properties of the Wigner Function

2.We can marglnallse

| W (x. p)dp =

3.Trace can be calculated:

J W x. pdpdx=Tr(p)

4.Some expectation values:
| S (x, p)dp = f(x)(x

Can we do this in general?

0| p)

jW(x p)dx = <

plx)=(f(2)



Operator Representations

We calculate

%j<x+y
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Operator Representations

We calculate

%R)H—y
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and find:

By symmetry:
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Operator Representations

Conjugation give us the other two relations:
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These are the operator correspondences.

N

We can now represent g(x, p)fdorany .g



Calculating Expectation Values

We can calculate
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Calculating Expectation Values

We can calculate

(Gp+ pR)p) = | xpW (x, p)dxdp

In general:

<: xX"p"i ,b> = j x" p"W(x, p)dxdp



What is the Wigner function?

The Wigner function can be negative! It not a probability
distribution.

Below is the ground state (left), first excited state (centre),
and fifth excited state (right) of the Harmonic Oscillator.




What is the Wigner function?

The Wigner function can be negative! It not a probability
distribution.

It is a quasi-probability distribution.

Negative areas have to be small.Wigner function still must
satisfy uncertainty relationship.



Evolving the Wigner Function

The quantum Liouville equation is
dp . A
——=ilp,H]
dt

The operator correspondences mean we can convert this
to a PDE.

This also works for open systems:
d ) . A N A
=il H]+ xD[e]
t



The Correspondence Principle

Wigner function allows formulation of QM that is almost
identical to CM.

It is ideal for studying the Classical-Quantum Limit.

We will find a novel approximation method for simulating
Wigner functions.



The Correspondence Principle

Let’s restore the Planck’s constants in our equations. The
operator correspondences become:

A ih 0 . ih O
Xp— x+—— W ——> p—— W
P ( 2 6pj PP (p 2 6xj

In the classical limit, these operators become x and p.



The Correspondence Principle
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The Correspondence Principle

Calculate the commutator:
Am AR Ag AD oY ( oY ( mo)( hoY
Xp,Xp|l— == |p——==|.|x+—= || p-——==

Expand as a power series in h. Zeroth order term vanishes.
First order term is:

Zh(mb - na)xm+a—1pn+b—l _ lh{xmpn , xapb}

which means that:

[A(x, p), B(x, p)] = ih{A(x, p), B(x, p)} + O(1*)




Liouville’s Equation

Liouville’s equation:

dp i .. 4
is to first order: gt h[p’H]
dWw i
GV _ L iniw  HY + O(h?
=iy 00?))
=—{W,H}+0(h)

To first order; the Wigner function evolves like a classical
probability distribution.



Simulating the Wigner Equation

Since Wigner function evolves classically, we can use
simulate it classically:

oH . oOH

We sample points, simulate them, and then calculate
expectation values.

Good for large systems.



Fokker-Planck Equation

To second order:

p
W 19449 B lw
dt \8xl. 0x,0x ; ]/

where x, is the position, x, is the momentum and we sum
over the indices.




Fokker-Planck Equation

We want to solve Fokker-Planck equation like before. Can
we write:

dx, = Adt +7?

and then average over the paths?



Fokker-Planck Equation

We want to solve Fokker-Planck equation like before. Can
we write:

dx, = Adt +7?

and then average over the paths?
Can’t do this with an ODE.

Instead we use non-deterministic paths.



Diffusion

The Diffusion Equation is a special case of the Fokker-
Planck Equation:

dH _ oM
dt Ox”’

Describes the spreading of particles due to random motion.

How would we simulate this?



Some Ideas
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the step size to 0.
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Some Ideas

Every step move the particle left or right randomly. Keeping
the variance over a given timescale constant, we decrease
the step size to 0.

Instead we could try some other probability distributions.
Just need zero mean and constant variance over interval.

Central Limit Theorem tells us that these all give the same
result!

Distribution of x(t) will be a Gaussian with variance
proportional to t.
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Wiener Noise

Wiener process is differential dW with:

E(dW)=0 E@w>)=1 E@WdW )=05(t-s)

To solve diffusion equation, sample points and evolve via

dx =dW

To actually simulate this, vary x randomly with small
intervals.



Wiener Noise

A typical Wiener process looks like
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Wiener Noise

A typical Wiener process looks like
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Fokker-Planck Unravellings
Since:

dH _o'H

dt Ox”

we can generalise:

—> dx=dW

d_W: 0 B.W —> dx,=C.dV,
dt  oxox,

where C,.jTC,.j=B,.j and dV; are Wiener processes.



Fokker-Planck Unravellings

This gives us the unravelling for the equation

d_W: iAz + 0 Bi' /%4
dt Ox, Ox.0x,

as the equation:

dx, = A;dt + C.dV,

Open classical systems follow the same equation.



Truncated Wigner Method

Most effective for large systems.
It is an uncontrolled approximation.

Distinctly quantum behaviour such as negative Winger
functions do not occur.

Method won’t work for Wigner functions with negative
values.

Need B; to be positive-definite.



Wigner Functions in Quantum Optics

Quantum optics uses raising and lower operators:

A T A o« A
a=x+ip a =x—ip

Phase-space becomes

a=x+ip a*=x+ip

Operator correspondences are

1 O
2 0a

ap —>(a +

o ap—fa -



Wigner Functions in Higher Dimensions

Easy to extend to higher dimensions.
Grid based methods scale exponential

Truncated Wigner Method scales linearly.



Conclusion

The Wigner function provides a representation of quantum
states and operators in phase space.

This provides one with a useful tool for visualising and
studying quantum systems.

It provides a tool for probing the correspondence between
classical and quantum systems.

Simulation methods such as the Truncated Wigner Method
allow one to semiclassically simulate quantum systems
stochastically and efficiently.



