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Introduction
Initially we represent a quantum state as a wavefunctionψ(x,t). 
Easy to find probability distribution of x:
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Introduction
Initially we represent a quantum state as a wavefunctionψ(x,t). 
Easy to find probability distribution of x:
Hard to find the distribution of p:

Can’t we just use a probability distribution P(x,p) like 
we did in classical mechanics?
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Classical Ensembles
Classically, P(x,p) can represent a classical ensemble. 
We can marginalise:
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Classical Ensembles
Classically, P(x,p) can represent a classical ensemble. 
We calculate expectation values:

The distribution evolves according to:
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Classical Ensembles
Classically, P(x,p) can represent a classical ensemble. 
We calculate expectation values:

The distribution evolves according to:

What do we get if we formulate Quantum Mechanics 
in the same way?
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Introducing the Wigner Function
The function we are looking for is the Wigner function:

We set ħ=1 in the equation.
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Introducing the Wigner Function
The function we are looking for is the Wigner function:

We set ħ=1 in the equation.
For a mixed state:
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3.  Trace can be calculated:
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Properties of the Wigner Function
2. We can marginalise:

3. Trace can be calculated:

4. Some expectation values:

Can we do this in general?
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Operator Representations
We calculate

and find:
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Operator Representations
We calculate

and find:

By symmetry:
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Operator Representations
Conjugation give us the other two relations:

These are the operator correspondences.
We can now represent                 for any   .
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Calculating Expectation Values
We can calculate
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Calculating Expectation Values
We can calculate

In general:
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What is the Wigner function?
The Wigner function can be negative! It not a probability 

distribution.
Below is the ground state (left), first excited state (centre), 

and fifth excited state (right) of the Harmonic Oscillator.



What is the Wigner function?
The Wigner function can be negative! It not a probability 

distribution. 
It is a quasi-probability distribution. 
Negative areas have to be small. Wigner function still must 

satisfy uncertainty relationship.



Evolving the Wigner Function
The quantum Liouville equation is

The operator correspondences mean we can convert this 
to a PDE. 

This also works for open systems:
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The Correspondence Principle
Wigner function allows formulation of QM that is almost 

identical to CM.
It is ideal for studying the Classical-Quantum Limit.
We will find a novel approximation method for simulating 

Wigner functions.



The Correspondence Principle
Let’s restore the Planck’s constants in our equations. The 

operator correspondences become:

In the classical limit, these operators become x and p.
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The Correspondence Principle
Calculate the commutator:
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The Correspondence Principle
Calculate the commutator:

Expand as a power series in ħ. 
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The Correspondence Principle
Calculate the commutator:

Expand as a power series in ħ. Zeroth order term vanishes. 
First order term is: 
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The Correspondence Principle
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The Correspondence Principle
Calculate the commutator:

Expand as a power series in ħ. Zeroth order term vanishes. 
First order term is: 

which means that:
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Liouville’s Equation
Liouville’s equation:
is to first order:

To first order, the Wigner function evolves like a classical 
probability distribution.
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Simulating the Wigner Equation
Since Wigner function evolves classically, we can use 

simulate it classically:

We sample points, simulate them, and then calculate 
expectation values.

Good for large systems.
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Fokker-Planck Equation
To second order:

where x1 is the position, x2 is the momentum and we sum 
over the indices.
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Fokker-Planck Equation
We want to solve Fokker-Planck equation like before. Can 

we write:
and then average over the paths?
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Fokker-Planck Equation
We want to solve Fokker-Planck equation like before. Can 

we write:
and then average over the paths?
Can’t do this with an ODE.
Instead we use non-deterministic paths.
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Diffusion
The Diffusion Equation is a special case of the Fokker-

Planck Equation:

Describes the spreading of particles due to random motion.
How would we simulate this?
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Some Ideas
Every step move the particle left or right randomly. Keeping 

the variance over a given timescale constant, we decrease 
the step size to 0.
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Some Ideas
Every step move the particle left or right randomly. Keeping 

the variance over a given timescale constant, we decrease 
the step size to 0.

Instead we could try some other probability distributions. 
Just need zero mean and constant variance over interval.

Central Limit Theorem tells us that these all give the same 
result!

Distribution of x(t) will be a Gaussian with variance 
proportional to t.



Wiener Noise
Wiener process is differential dW with:
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Wiener Noise
Wiener process is differential dW with:

To solve diffusion equation, sample points and evolve via

To actually simulate this, vary x randomly with small 
intervals.
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Wiener Noise
A typical Wiener process looks like
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Fokker-Planck Unravellings
Since:

we can generalise:

where CijTCij=Bij and dVj are Wiener processes.
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Fokker-Planck Unravellings
This gives us the unravelling for the equation

as the equation:

Open classical systems follow the same equation.
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Truncated Wigner Method
Most effective for large systems.
It is an uncontrolled approximation.
Distinctly quantum behaviour such as negative Winger 

functions do not occur. 
Method won’t work for Wigner functions with negative 

values.
Need Bij to be positive-definite.



Wigner Functions in Quantum Optics
Quantum optics uses raising and lower operators:

Phase-space becomes

Operator correspondences are
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Wigner Functions in Higher Dimensions
Easy to extend to higher dimensions.
Grid based methods scale exponential
Truncated Wigner Method scales linearly.



Conclusion
The Wigner function provides a representation of quantum 

states and operators in phase space.
This provides one with a useful tool for visualising and 

studying quantum systems.
It provides a tool for probing the correspondence between 

classical and quantum systems.
Simulation methods such as the Truncated Wigner Method 

allow one to semiclassically simulate quantum systems 
stochastically and efficiently.


